2018 Text for Introductory College Parallel Physics

0 Why This Textbook?

1 Four Lenses of Mechanics

  • 1.0 introduction to lenses
  • 1.1 Momentum
  • 1.2 Energy
  • 1.3 Dynamics (Forces)
  • 1.4 Kinematics (speed)
  • 1.5 Kinematics (acceleration)
  • 1.6 Energy: Kinetic, and Gravitational Potential
  • 1.7 Forces affect Momentum and Energy
  • 1.8 Lens, Motivation, Application
  • 1.9 Scaling: What changes as things get larger?

2 One-Dimensional Mechanics

  • 2.0 Work
  • 2.1 Power
  • 2.2 Units
  • 2.3 Graphical Analysis of Kinematics
  • 2.4 Vectors and Direction
  • 2.5 Dynamics Protocol and More Directions
  • 2.6 Springs: Force and Stored Energy
  • 2.7 Potential Energy Diagrams
  • 2.8 Update and Summary on Lens Method

3 Important One-Dimensional Applications

  • 3.0 Changing Reference Frames
  • 3.1 Elastic Collisions in 1D, making reference to collisions (from OpenStax)
  • 3.2 Friction

4 Rotational Mechanics

  • 4.0 Intro to Rotation (4 lenses)
  • 4.1 Direction of Rotation
  • 4.2 Rotation and Tangential Motion
  • 4.3 Torque, Work, Power
  • 4.4 Moment of Inertia
  • 4.5 Moments of Inertia of Solid Bodies
  • 4.6 Intro to Statics
  • 4.7 Angular Momentum Conservation

5 Central Forces, Central Acceleration

  • 5.0 Centripetal Acceleration
  • 5.1 Ubiquitous Inverse Square Law
  • 5.2 Universal Gravity
  • 5.3 Loop the Loop: circular motion in the vertical plane
  • 5.4 Astro Gravitational Potential Energy and Escape Speed

6 Systems of Bodies

  • 6.0 Intro to Linear System of Masses
  • 6.1 Rotational Systems
  • 6.2 Center of Mass
  • 6.3 Parallel Axis Theorem

Chapter 7, college, Spring 2018

  • 7.0 Introduction to Components
  • 7.1 Components, Work, Torque, Statics, Momentum
  • 7.2 Inclined Plane
  • 7.3 Conical Pendulum
  • 7.4 Angular Momentum of a Point Mass
  • 7.5 Angular Momentum, Stability, Precession
  • 7.6 Trigonometry and two Derived Equations