Midterm #1, 141, Q3 Schwartz Name

From the syllabus: In order to achieve an "A": Consistently

- correctly identifies underlying physics concepts,
- sets up problem with good drawing and reasons,
- formulates method to solve problem,
- correctly uses units and
- verifies whether answer makes sense.

An answer alone is worth no credit. Please estimate answers: don't leave them in roots, trig., fractions.

- A 10 kg object is shown against a frictionless wall that is leaning at an angle of 30° as shown.
- a) If I push horizontally on the box as shown with a force of 100 N, what is the box's acceleration? – please include direction and magnitude

dynamics: because there is a force coosing an acceleration.

IF.= 0 no acceleration in x-direction

Try may these forces are oriented in garaction!

-186N+50N=(10Kg)(ay)

13.6m/s2 = Qu

acceleration is 13.6m/s

Fgx = Fgsin 0 = 100N sin30° = 50N

= 5004

b) What is the normal force acting on the box? – please include direction and magnitude

> ZFx = 0 = 50N + 86N + FN

degnamics because EF = Max = 0 (Statics)

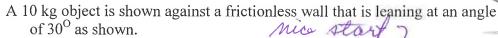
hormal force would be 136N in the positive X-direction, since there is no acceleration in the x-direction, the normal force is equal & opposite to the SVM of the forces in the x-direction. But gravity has a negative component in &, pulling

block away from surface

soll CAH TON of segn!

vers: don't1-Fo=100N 30° push

Fg=(10kg)(10mg) = 100 N


Fpx = Fp COSO = 100N COS 30 = 8(a)

Midterm #1, 141, Q3 Schwartz Nam

From the syllabus: In order to achieve an "A": Consistently

- correctly identifies underlying physics concepts,
- sets up problem with good drawing and reasons,
- formulates method to solve problem,
- correctly uses units and
- verifies whether answer makes sense.

An answer alone is worth no credit. Please estimate answers: don't leave them in roots, trig., fractions.

a) If I push horizontally on the box as shown with a force of 100 N, what is the box's acceleration? – please include direction and magnitude

Dynamics: Forces
$$\Sigma \overrightarrow{F} = m\overrightarrow{a}$$

Ashforce: 100 N

Cos 60° = $\frac{y}{100}$ = $y = 50$ N

$$\cos 60^\circ = \frac{y}{100^\circ} = 19 = 50^\circ \text{ N}$$

Ash force:
$$100 \text{ N}$$

$$\frac{30 \quad 60}{500} \quad \cos 60^{\circ} = \frac{y}{100 \text{ N}} = y = 50 \text{ N}$$

$$\frac{1}{5} \sin 60^{\circ} = \frac{x}{100 \text{ N}} = x = 5053 \approx 87 \text{ N}$$

$$\cos 60^{\circ} = \frac{x}{100N} = x = 50N$$

$$\cos \theta = \frac{x}{100N} = x = 50N$$
 $\sin \theta = \frac{y}{100N} = y \approx 87N$

for acceleration: Add up y-components: 50N/+ 87N = 137N $a = \frac{f}{m} = \frac{137N}{10kg} = \frac{13.7m/s^2}{10kg}$

push

100

300

b) What is the normal force acting on the box? – please include direction and magnitude

Normal Force : Use my x-components (work above) for

2Fx=max=0

Result

87N + A 50N = 37N

The Normal force must be just enough to counteract the force on the surface, so 37 N