BE \#3.

The first question (potential energy diagram) is on the problem set. Please see solutions there.
2. An object starts at 10 m and has a velocity of $\mathrm{v}(\mathrm{t})=6 \mathrm{~m} / \mathrm{s}^{-}-4 \mathrm{~m} / \mathrm{s}^{2}(\mathrm{t})+3 \mathrm{~m} / \mathrm{s}^{3}\left(\mathrm{t}^{2}\right)$. Find the acceleration, velocity, and position at 3 seconds.

$$
\begin{aligned}
& \text { For } v \text { we can plug and chang } \\
& V(3)=6 \frac{\mathrm{~m}}{\mathrm{~s}}-4 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 3 \mathrm{~s}+3 \frac{\mathrm{~m}}{s^{3}} \cdot 9 \mathrm{~s}^{2}=6 \frac{\mathrm{~m}}{\mathrm{~s}}-12 \frac{\mathrm{~m}}{\mathrm{~s}}+27 \frac{\mathrm{~m}}{\mathrm{~s}}=21 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& a=\frac{d v}{d t}: . \\
& a(t)=-4 \frac{m}{s^{2}}+2 \cdot \frac{3}{s^{3}} t \text {. diagram? } \\
& a(t)=-4 m+18 r_{3}=14 \\
& a(3)=-4 \frac{\mathrm{~m}}{s^{2}}+18 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=14 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} 2 \\
& x(t)=v d t+\text { initial os } \\
& \therefore x(t)=\int 6 \frac{m}{s}-4 \frac{m}{s^{2}} t+3 \frac{m}{s^{2}} t^{2} d t+10 m \\
& x(3)=6 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 3 \mathrm{~s}-\frac{4}{2} \frac{\mathrm{~m}}{s^{2}} \cdot 9 s^{2}+1 \frac{\mathrm{~m}}{s^{3}} \cdot 27 \mathrm{~s}^{3}+10 \mathrm{~m} \\
& =18 m-18 m+27 m+10 m=37 m
\end{aligned}
$$

