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Learning Objectives

This textbook was designed for use in conceptual and algebra-based physics courses. The content was
chosen in such a way that it aligns with two different standards. The first is the physics content in the
“Foundational Concepts” on the Association of American Medical Colleges’ Medical College Admissions
Test (MCAT). The second is the “Transfer Assurance Guidelines” (TAG) for first-semester algebra-based
physics in the State of Ohio.

These two standards each contain dozens of learning objectives, some of which overlap. Appendix F lists
each of the learning objectives and shows the section in which each appears for the first time in the textbook.
In some cases the learning objectives are developed over the course of several sections; in such cases multiple
sections are listed.

The Table of Contents and the upper-right corner of the first page of many sections of the book contain
icons that indicate that the new material presented in the section explicitly covers either MCAT foundational
concepts or the State of Ohio learning objectives:

MCAT foundational concept

Ohio TAG learning objective

In a very small number of cases, a foundational concept or learning objective is first introduced in an
end-of-chapter question. In those cases, the question includes the appropriate icon.

It should be noted that in fact nearly every chapter contains material that is strongly related to the learning
objectives for both MCAT and Ohio TAG. The icons are used only in the places where the section introduces
material that is explicitly named in the learning objectives. For example, the concept of power is not
included in the Ohio TAG requirements for the first semester of algebra-based physics. But the Ohio TAG
requirements for the second semester of algebra-based physics include describing the power delivered by
batteries and the power dissipated in resistors in simple circuits. The concept of power is usually introduced
along with energy, which is a concept developed in first-semester physics. So while the section of this
textbook where power is introduced is not marked with the ”Ohio TAG” icon since it is not an explicit
learning objective, it is prerequisite knowledge for anyone who plans to take the second semester course.

This book is not endorsed by either the Association of American Medical Colleges or the Ohio
Department of Higher Education. The determination of which content is relevant to the MCAT
Foundational Concepts and Ohio TAG is based solely on the judgement of the author of this
textbook.
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Chapter 1

Our Physics Toolbox

Force

Motion Energy

Momentum

Figure 1.1: Template for a concept map in physics[1]

This book approaches physics in a way that is un-
usual for a physics textbook but is quite natural in
our daily lives. If you were an apprentice carpen-
ter, you would expect to quickly start working with
an array of different tools. You would also learn to
use these tools in a variety of ways, perhaps read-
ing, watching, listening to instruction, and trying
them out yourself. Think of yourself now as an
apprentice physicist, learning to use the tools of
physics.

This chapter introduces two different types of
“tool sets.” One is a set of conceptual ideas: mo-
tion, momentum, energy, and force. It may be
helpful to create a concept map to give yourself
a framework for how all of these ideas are con-
nected. The template in Figure 1.1 is a good
place to start. Make a larger version of it, then
add ideas and connections within and between the
colored areas. All of these concepts will be built
up in parallel over the course of this book.

The other “tool set” that is introduced in this
chapter includes three different but interrelated approaches to help us understand each of these concepts:
Words, Graphics, and Numbers. Each of these approaches is presented in parallel in different columns on
most pages of this book, to emphasize that these three approaches are interrelated and can be used together
to build a more complete understanding of a physical situation.



1.1 Motion, Momentum, Energy, and Force

Words

The left columns of this book generally contain ver-
bal representations of physics.

Physics is an attempt to describe the behavior of
the physical universe. But the universe is compli-
cated, so it is necessary to make some simplifica-
tions.

The approach of this book is to start out by looking
at the behavior of very simple objects, and gradu-
ally move to more and more complicated systems.
An “object” in physics can be anything that doesn’t
change shape. A “system” is a collection of one or
more objects.

We will start with the area of physics that is called
mechanics. There are four main concepts involved
in mechanics: motion, momentum, energy, and
force.

Pay attention to the color coding. The words,
graphics, and numbers are color coded to help show
which concept is being considered and how the con-
cepts are interrelated.

Motion is important because it is what we can most
directly observe. This includes the object’s posi-
tion; its velocity, which is another way of saying its
speed and its direction of motion; and its acceler-
ation, which is the change of an object’s velocity
over time.

Graphics

The center columns of this book generally contain
graphical representations of physics.

Photos or drawings

Figure 1.2: A galaxy. Because every physics
textbook should include a picture of a galaxy![2]

Motion maps

0 s 1 s 2 s 3 s

Figure 1.3: Example of a motion map[1]

Numbers

The right columns of this book generally contain
mathematical representations of physics.

A letter or symbol in italics is a variable used to
describe some physical quantity. The same letter
will always represent the same type of quantity. A
lower-case m, for example, will always represent
a mass. Mass is an example of a scalar quantity
because it has a size (magnitude) but no direction.

A letter or symbol with a half-arrow on top, like
x⃗, represents a vector. With a vector it is impor-
tant to remember that it has a specific direction,
often positive (+) or negative (−). Subscripts are
used to differentiate between several of the same
type of variable in a given situation. For example,
if a problem includes an adult and a child, their
positions could be ⃗xadult and ⃗xchild.

Boxed equations are true except for any limitations
described in the accompanying text.

2 = 2

Unboxed equations are true for a specific example
but are not generalizable to all situations.

Motion is described by position Ð⇀x , velocity Ð⇀v , and
acceleration Ð⇀a .

Note that all of these physical quantities are vec-
tors.

14



Momentum is related to the effort that would be
needed to stop a moving object. This physics defi-
nition overlaps well with the way the word “momen-
tum” is used in our everyday language. If you own
a successful business we say that it has momen-
tum, and your competitors will have a hard time
stopping you!

In physics, momentum increases with an object’s
velocity and its mass. Velocity and momentum
share the same color in this book because of their
close relationship to each other.

Energy is the capacity of an object or system to af-
fect another object or system. It is closely related
to the idea of “work,” which is a transfer of en-
ergy into or out of a system by something external
to that system. These physics definitions overlap
well with the way the words “energy” and “work”
are used in our everyday language. If you have no
energy, you can’t do any work!

There are several different forms of energy, often
associated with an object’s velocity, an object’s po-
sition, or an object’s temperature. Energy is able
to transform from one form to another through var-
ious physical processes.

A force is an interaction between objects, often
described as a “push” or a “pull.” Forces cause
changes in motion, momentum, and energy, so
forces are truly the heart of physics. All the grand
theories of physics seek to study the forces that are
at work in the universe.

Momentum vs Time Graph

Time [s]

M
om

en
tu

m
[k

g⋅m
/s

]

Figure 1.4: A line graph of momentum over a
certain period of time.[1]

Energy Bar Graphs

En
er

gy

Ek

Ug

Us

Figure 1.5: Example of an energy bar graph[1]

Free-Body Diagrams (FBD’s)

FT

Ff

Figure 1.6: Example of a free-body diagram[1]

The symbol for momentum is Ð⇀p .

Note that momentum is a vector. It is associated
with an object’s velocity Ð⇀v and its mass m, and
an object’s momentum always points in the same
direction as the velocity Ð⇀v .

There are two different symbols for energy: U is
used to represent potential energy, which depends
upon the configuration of a system; and E is used
to represent other types of energy that do not de-
pend upon configuration. Examples of potential
energy are gravitational potential energy Ug and
spring (or elastic) potential energy Us. Examples
of other types of energy are kinetic energy Ek and
thermal energy Eth

Note that energy is a scalar.

The symbol for force is Ð⇀F . Forces cause acceler-
ation. A force acting over time changes momen-
tum. And a force acting over a distance does work,
changing energy.

Note that force is a vector.
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1.2 A Motionless Rock, in the Horizontal Direction

Words

A 5-kg rock is sitting on a flat place on the ground
on a calm day. No wind. No earthquake. You
watch for ten seconds. It just sits there in the same
place, doing absolutely nothing, for the whole time.
We will focus on just one object: the rock.

This may seem like a very simple physical situation
already, and to make it as simple as possible, we
will only consider the horizontal direction.

For this example, it doesn’t matter too much which
concept we consider first–we’re going to end up
with a lot of zeros in any case!

In the last section, we ended with forces, so just
for fun this time let’s start with forces. Remember,
a force is an interaction between objects. Look-
ing at the photo and considering the description
above, what are the forces in the horizontal direc-
tion? There is nothing pushing or pulling the rock
to the left or to the right! That means there are
no forces in the horizontal direction.

Graphics

Figure 1.7: A motionless rock[3]

FBD of Rock - Horizontal Direction
A Free-Body Diagram (FBD for short) is a sim-
ple diagram showing the forces that are acting on
an object. The object is represented simply by a
rectangle. Then arrows are used to represent the
forces acting on the object. In this case, there are
no forces acting on the rock in the horizontal di-
rection (which is all that we are considering right
now), so our FBD ends up being just a rectangle!

rock

Figure 1.8: Free-body diagram of a rock with no
forces acting on it[1]

Numbers

The only number given in this example is 5. The
number by itself is meaningless; it needs to be at-
tached to some physical quantity, and almost al-
ways with a specific unit.

The kilogram, abbreviated [kg], is the unit of mass
in the Système International (SI) unit system that
has been adopted as the official standard by nearly
every country in the world.

The other base SI units are the meter [m] for dis-
tance and the second [s] for time. This book will
use SI units almost exclusively.

When considering forces and how they affect an
object, there are often multiple forces acting at one
time. It is important to consider the net force that
is acting. The net force is defined as the sum of all
of the forces…

ÐÐ⇀
Fnet ≡∑

Ð⇀
F (1.1)

…where the three horizontal lines (≡) mean “is de-
fined as,” and the Greek letter Sigma (∑) means
“the sum of…”

In this particular example, there are no forces at all
acting in the horizontal direction, so the net force
is zero… ÐÐ⇀

Fnet = 0
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What can be said about the rock’s motion? The
rock is not moving, so its position is constant. If it
was 2 feet in front of you when you started watch-
ing, it was 2 feet in front of you when you stopped
(assuming you didn’t move).

And no matter where it started, its velocity, which
is its change in position over time, is zero. Its accel-
eration, which is the change in velocity over time,
is also zero, because the velocity isn’t changing.

How much effort would be needed to stop this
rock? The rock isn’t moving, so it would take no
effort at all! That means the rock has no momen-
tum.

Remember, energy is a capacity to affect another
object or system. This rock can’t do anything!
So it has no (useful) energy. Technically, the rock
does have thermal energy, because it has a non-
zero temperature. And Albert Einstein correctly
theorized that mass is also a form of energy. But
for our purposes, we will consider only mechani-
cal energy, which consists of kinetic, gravitational
potential energy, and spring potential energy.

Motion map- motionless rock
A motion map uses dots to show position at var-

ious points in time, as if you were holding a video
camera steady and putting a dot at an object’s po-
sition in each frame. For this scenario, drawing and
numbering one dot per second gives…

0–10 s

Figure 1.9: Motion map showing no motion[1]

Momentum vs Time - motionless rock
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Figure 1.10: Momentum is zero the whole time.[1]

Energy bar graph - motionless rock
Kinetic energy, gravitational potential energy, and

spring potential energy are all are zero, so a bar
graph would have no bars.

If the net force on an object is constant, as it is in
this situation, position is given by…

Ð⇀x =Ð⇀x0 +Ð⇀v0 ⋅ t +
1

2
Ð⇀a ⋅ t2 (1.2)

…where the subscript “0” means the value at time
zero. In this case, Ð⇀v0 = 0 and Ð⇀a = 0, so…

Ð⇀x =Ð⇀x0

…which means that Ð⇀x at any time t is equal to
whateverÐ⇀x was at time t = 0.

The momentum of an object is equal to its mass
times its velocity:

Ð⇀p =m ⋅Ð⇀v (1.3)

As stated above, the velocityÐ⇀v = 0 in this scenario,
so…

Ð⇀p =m ⋅ 0 = 0

No motion, so Ek = 0. No spring, so Us = 0. And
gravitational potential energy is defined based on
vertical position y. But we are only considering the
horizontal direction, so Ug = 0 as well.
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1.3 A Motionless Rock, in the Vertical Direction

Words

A 5-kg rock is sitting on a flat place on the ground
on a calm day. No wind. No earthquake. You
watch for ten seconds. It just sits there in the same
place, doing absolutely nothing, for the whole time.
Again we will focus on analyzing just one object:
the rock.

Yes, this is the same physical situation that we have
already studied, but now we will consider the verti-
cal direction, which adds another level of complex-
ity.

Let’s start by considering the motion of the rock.
It is doing nothing more in the vertical direction
than it did in the horizontal direction. Its vertical
position is unchanging; its vertical velocity is zero;
and its vertical acceleration is also zero.

What about the rock’s vertical momentum? Again,
since this rock isn’t moving in the vertical direction,
it won’t take any effort at all in the vertical direc-
tion to make it stop! It has no vertical momentum.

Graphics

Figure 1.11: A motionless rock[3]

Motion map- motionless rock

0–10 s

Figure 1.12: Motion map of no motion. Again![1]

Momentum vs Time - motionless rock

As in the horizontal direction, A momentum vs time
graph would be a horizontal line at zero the whole
time.

Numbers

It is helpful to create lists of known and unknown
quantities. Only one “known” is specifically listed:
5 kg. Read carefully for others!

• m = 5 kg
• Ð⇀v0 = 0
• Ð⇀a = 0

We are not asked to find any specific unknowns;
instead, we will use our available tools to find ev-
erything we can.

This is exactly the same as the horizontal motion
of the rock, but to make it more clear that we are
looking only at vertical motion, we can remove the
half-arrow and use y in place of x…

y = y0

As with motion, we can remove the half-arrow and
use a y subscript to indicate that we are only con-
sidering the y direction, commonly referred to as
“ŷ.”

py =m ⋅ vy = 0

This could also have been done in the x̂ direction
before, with x subscripts instead of y.
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When we consider forces, there is a fundamental
difference between the horizontal and vertical di-
rection. The rock isn’t moving at all, but there
are two different external forces that are acting on
the rock. An “external” force is an interaction with
something outside of the system that is being con-
sidered. In this case, our system is a single object,
the rock.

One external force is gravitational force, an inter-
action between the rock and the entire mass of the
earth. Gravitational force is often referred to as
“weight.” On the surface of the earth, the gravita-
tional force on an object always points downward,
toward the center of the earth.

The other force is a “contact force” that comes
from the ground underneath the rock. If the ground
were not there, the rock would be falling, so we
know that there is a force from the ground that
completely opposes the force of gravity. This con-
tact force is called the “normal” force, where the
word “normal” means “perpendicular to the sur-
face.” In this case, the normal force is pointing
directly upward because the ground is flat.

We can look at energy in two different ways. We
can consider work done by an external force of grav-
ity or we can consider earth’s gravity as a source
of potential energy. Work is done by a force acting
over a distance, but the rock doesn’t move, so no
work is done. Gravitational potential energy de-
pends on height–the higher something is, the more
gravitational potential energy it has. But in this
case the rock is on the ground, so it has no gravi-
tational potential energy.

FBD of Rock - Vertical Direction

Gravitational force points downward, and normal
force from the ground points upward. Since
we know they cancel each other completely, the
lengths of the arrows should be the same.

Normal Force Fn Gravitational Force Fg

rock

Figure 1.13: Free-body diagram of a rock resting
on the ground[1]

Note that we are concerned only with the forces
acting on the rock, not about any forces of the
rock on something else like the ground. In this
case, the forces cancel each other out–another way
to describe this is to say that the forces are “bal-
anced,” giving zero net force.

Energy bar graph - motionless rock

Again, kinetic energy, gravitational potential en-
ergy, and spring potential energy are all are zero,
so a bar graph would have no bars.

The rock is doing nothing, so net force must be
zero. ÐÐ⇀

Fnet ≡∑
Ð⇀
F =
Ð⇀
Fg +

Ð⇀
Fn = 0

…so… Ð⇀
Fg = −

Ð⇀
Fn.

At the surface of the earth, the gravitational force
on an object is…

Ð⇀
Fg = −m ⋅ g ŷ (1.4)

…where g = 9.8 m/s2, the magnitude of the accel-
eration of gravity at the earth’s surface. The mag-
nitude of Ð⇀Fg is given by (m ⋅ g) and the direction
is given by −ŷ (downward). In this case...

Ð⇀
Fg = −5 kg ⋅ 9.8m/s2 ŷ
= −49 (kg ⋅m/s2) ŷ = −49 N ŷ

…which makes Ð⇀Fn = +49 N ŷ in this example. The
SI unit for force is the newton [N].

1 N = 1 kg ⋅m
s2

No motion, so Ek = 0. No spring, so Us = 0. Grav-
itational potential energy is based on vertical posi-
tion:

Ug =m ⋅ g ⋅ y (1.5)

We are free to define the position where y = 0, so
we can choose our y = 0 to make the math as easy
as possible. Setting y = 0 at ground level gives...

Ug =m ⋅ g ⋅ 0 = 0
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1.4 A Rolling Soccer Ball

Words

A 0.4-kg soccer ball is rolling to the right at a con-
stant speed of 9 m/s across a level soccer pitch.
Friction force and air resistance are very small, so
we will ignore them. We will consider only the hor-
izontal direction. We will focus on analyzing just
one object: the ball.

This situation is different from a motionless rock,
because this time the soccer ball is moving. But in
terms of horizontal forces, it is exactly the same.
Looking at the photo and considering the descrip-
tion above, what are the forces in the horizontal
direction? We are specifically told to ignore any
friction forces. And there is nothing that is ac-
tively pushing or pulling the soccer ball to the left
or to the right. That means there are no forces in
the horizontal direction.

If there are no forces in the horizontal direction,
how does the soccer ball keep moving? It is the
ball’s momentum that carries it. Until an outside
force tries to make the soccer ball stop, it will just
continue going in a straight line with the same mo-
mentum. This is called “conservation of momen-
tum;” the momentum of any isolated system re-
mains constant.

An “isolated” system is one that has no interactions
with anything outside of the system.

Conservation of momentum is the reason momen-
tum is such a powerful tool for studying physics.

Graphics

Figure 1.14: A soccer ball rolling to the right[4]

FBD of Soccer Ball - Horizontal
Since we are ignoring friction, there are no forces
acting on the soccer ball in the horizontal direction.

ball

Figure 1.15: FBD of a rolling soccer ball,
horizontal direction only[1]
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Figure 1.16: Momentum is constant.[1]

Numbers

Knowns: m = 0.4 kg
vx = +9m/s
ax = 0
Fnet,x = 0

In addition to listing ”knowns,” we should also list
our assumptions. For example, in our analysis we
will use the convention “to the right” as the positive
horizontal direction. We are also assuming that
friction and air resistance can be ignored.

We know that ax is zero because the velocity is
constant, 9 m/s to the right.

In this example, there are no forces at all acting in
the horizontal direction, so the net force is zero…

Fnet,x = 0

…where the subscripts “net, x” indicate that we are
referring to the net force in the x̂ direction.

Ð⇀p =m ⋅Ð⇀v

…so…

px =m ⋅ vx = 0.4 kg ⋅ (+9m/s) = +3.6
kg ⋅m

s

From this equation we find that the units for mo-
mentum are [kg⋅m

s
].
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Unlike the motionless rock on the ground, a rolling
soccer ball on the ground does have energy. It has
kinetic energy, or energy of motion. The SI unit for
energy is the joule [J].

Any moving object has kinetic energy that increases
with the object’s mass and its speed. Since a mo-
tionless object has zero kinetic energy and mass
and speed are both always positive numbers, ki-
netic energy can never be negative.

Thinking about motion becomes much more inter-
esting when something is moving. Since it is rolling,
this soccer ball is definitely moving. What do we
mean when we say that an object is moving? That
means the object has a non-zero velocity. But when
we talk more generally about “motion” in physics,
we are considering not only velocity but also po-
sition and acceleration. This soccer ball has the
simplest motion that we can consider for an object
that is actually moving. It has non-zero velocity,
but the velocity is not changing, so it has zero ac-
celeration.

Energy bar graph - rolling soccer ball
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Figure 1.17: Energy bar graph of a rolling soccer
ball[1]

Motion map- rolling soccer ball
A motion map tells us about more than just po-

sition. It can also tell us about the velocity of the
object. Notice that all of the arrows between the
points are identical. The arrows represent veloc-
ity, so the motion map shows that the velocity is
constant.

0 s 1 s 2 s 3 s 4 s 5 s

Figure 1.18: Motion map of a soccer ball rolling
to the right with a location shown every second
for 5 seconds[1]

As with the rock on the ground, Ug = 0 and Us = 0.
But this time we have kinetic energy. Kinetic en-
ergy depends on an object’s mass and its speed v,
which is simply the magnitude of its velocity ∣Ð⇀v ∣,...

Ek =
1

2
m ⋅ v2 (1.6)

...so in this example the kinetic energy from the
linear motion is...

Ek =
1

2
0.4 kg ⋅ (9m/s)2 = 16.2 kg ⋅m2/s2 = 16.2 J

The SI unit for energy is the joule [J].

1 J = 1 kg ⋅m2

s2

For this example, Equation 1.2 becomes …

Ð⇀x =Ð⇀x0 +Ð⇀v0 ⋅ t +
1

2
Ð⇀a ⋅ t2 =Ð⇀x0 +Ð⇀v0 ⋅ t + 0

…where the subscript “0” is usually pronounced
“naught” and means the value at time zero. In
this case, Ð⇀v0 = 9m/s x̂ and Ð⇀a = 0 , so…

Ð⇀x =Ð⇀x0 + (9m/s x̂) ⋅ t

…which means that Ð⇀x moves 9 meters to the right
of its initial position in every second that passes.
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1.5 A Falling Rock

Words

A 0.8-kg rock is dropped from a position 2 m above
the ground. After 0.5 seconds it is still in the air.
Air resistance is very small, so we will ignore it.
Describe the behavior of the rock starting from the
time just after it was released.

We only need to consider the vertical direction,
since there is no motion, momentum, or force in
the horizontal direction. The time “just after it
was released” is when the hand is no longer touch-
ing the rock but the rock hasn’t yet started to fall.

At first the rock is not moving, but when it is re-
leased gravity creates a unbalanced force that pulls
it down. In fact gravity was affecting the rock be-
fore it was released, but the force force of gravity
was balanced by a force from the hand.

After it is released the rock is in “free-fall,” which
means the only force affecting the rock is gravity.

Since the rock is initially not moving, it has no
initial momentum. But after half a second it is
moving downward. The momentum is changing
because of the force of gravity. The effect of force
on momentum is described by Newton’s Second
Law of Motion, which defines force as something
that changes momentum over time.

The momentum of the rock starts at zero, as it
falls downward it gains momentum in the negative
direction. This negative momentum gradually in-
creases over the entire time that the rock is falling.

Graphics

Figure 1.19: A rock falling after being dropped[5]

Fg

rock

Figure 1.20: FBD of a falling rock[1]

0 0.1 0.2 0.3 0.4 0.5

−4

−3

−2

−1

0

Time [s]

M
om

en
tu

m
[k

g⋅
m

/s
]

Figure 1.21: Momentum as a function of time[1]

Numbers

Assumptions: +ŷ is upward
air resistance is negligible
free-fall

Knowns: m = 0.8 kg
y0 = 2 m
v0y = 0

Velocity Ð⇀v is a vector, but speed v is a scalar that
cannot be negative, since it is ∣Ð⇀v ∣. But vy is the ŷ
component of Ð⇀v , so it can be negative.

ÐÐ⇀
Fnet =∑

Ð⇀
F =
Ð⇀
Fg

ÐÐ⇀
Fnet = −m ⋅g ŷ = (−0.8 kg ⋅ 9.8m/s2) ŷ = −7.84 N ŷ

This is the first situation we have met where the
object is not “in equilibrium,” meaning that this
time the net force on the object is not zero. Net
force is given by Newton’s Second Law:

ÐÐ⇀
Fnet ≡

Ð⇀
∆p

∆t
(1.7)

“∆” means “change in…” so Ð⇀∆p = Ð⇀pf − Ð⇀pi , final
momentum, with subscript f , minus initial momen-
tum, with subscript i.

Rearranging, Ð⇀∆p =
ÐÐ⇀
Fnet ⋅ ∆t. The momentum

changes linearly from zero to its final value…

py,f = −7.84 N ⋅ 0.5 s = −3.92 kg ⋅m/s
22



Remember, momentum is related to velocity. So
if the momentum of the rock is changing, that
means its velocity is also changing. Acceleration
is a change in velocity over time, so the same force
that causes momentum to change also creates an
acceleration.

The force of gravity accelerates the rock in the
negative (downward) direction, making it fall faster
and faster with a constant acceleration that doesn’t
depend on its mass.

This relationship between force and acceleration is
another form of Newton’s Second Law.

For this example we will look at energy in terms of
gravitational potential energy, not as work done by
the force of gravity. The rock is not moving at the
moment it is dropped, so it has no kinetic energy
but it does have gravitational potential energy since
it is elevated. While falling, it is gaining kinetic
energy but losing gravitational potential energy.

Energy is a useful concept to use when looking at
this situation, because energy is conserved. It can
never be created or destroyed; it can only change
from one form to another. This is what makes
energy such a powerful tool in physics.

If you know how much total energy is in an isolated
system at any point in time, you know that same
amount of energy is present for all points in time.
So if you know, for example, how much gravita-
tional potential energy was lost you can find how
much kinetic potential energy was gained.

A motion map can also give information about ac-
celeration. If the arrows are changing, the object
is accelerating.

0.0 s
0.1 s
0.2 s
0.3 s

0.4 s

0.5 s

Figure 1.22: Motion map of a falling rock[1]

Since we are considering gravity as a form of energy,
conservation of energy tells us that the sum of the
heights of all of the bars on the energy bar graph
at 0 s is equal to the sum of the heights of all of
the bars at 0.5 s.
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Figure 1.23: Energy bar graph of a falling rock[1]

Force also causes acceleration:

ÐÐ⇀
Fnet =m ⋅Ð⇀a (1.8)

Rearranging, we find…

Ð⇀a =
ÐÐ⇀
Fnet

m
= −7.84 N ŷ

0.8 kg
= −9.8m/s2 ŷ

In fact, Ð⇀a for anything in free-fall is −9.8m/s2 ŷ.

y = y0 + v0y ⋅ t +
1

2
ay ⋅ t2 = 2m + 0 ⋅ t − 4.9m/s2 ⋅ t2

…so after 0.5 s, y = (2 − 4.9 ⋅ 0.52) m = 0.775m

There is no spring, so Us = 0. Using 0 seconds for
the initial time and 0.5 s for the final time…

E0,total = Ef,total

E0k +U0g = Ek,f +Ug,f

0 +m ⋅ g ⋅ y0 =
1

2
m ⋅ v2f +m ⋅ g ⋅ yf

Everything in the last equation was given in the
knowns or has already been found, except for the
final speed, so we can solve for that:

vf =
√

2 ⋅
m ⋅ g ⋅ y0 −m ⋅ g ⋅ yf

m

Note that mass cancels out, so when air resistance
is negligible the final speed of a falling object is not
dependent upon its mass.
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1.6 Summary

Chapter summaries in this book are ordered by concept, not necessarily in the order in which they are
presented in the chapter. Mathematical models are grouped together at the end of each summary. See the
appendices for the meanings of all symbols used in this book.

General

• An “object” can be anything that doesn’t change shape.

• A “system” is a collection of one or more objects.

• An “isolated system” is one that has no interactions with anything outside of the system.

• The kilogram [kg] is the SI unit of mass.

• The second [s] is the SI unit of time.

Forces

• The newton [N] is the SI unit of force. 1 N = 1kg⋅m
s2

• A force is an interaction between objects, often described as a “push” or “pull.”

• Gravitational force is the same as weight, and is pointed down toward the earth.

• Normal force is a contact force that points directly out of a surface.

• Forces cause acceleration.

• Forces change momentum.

• An object that is affected only by gravity is said to be in “free-fall.”

• An object whose net force is zero is said to be in equilibrium.

• Forces can be shown graphically using a “Free-body diagram,” or “FBD,” which has a box representing
the object and arrows representing the external forces affecting the object. Arrows in a FBD should
be drawn in the correct directions, with lengths corresponding to the magnitudes of the forces.

Normal Force Fn Gravitational Force Fg

object

Sample Free-Body Diagram (FBD)[1]

Motion

• The meter [m] is the SI unit of distance.

• An object’s motion is described by its position, velocity, and acceleration.

• Velocity is change in position over time.



• Acceleration is change in velocity over time.

• Velocity includes both speed (which is always positive) and direction, so velocity can be negative.

• An object moves at a constant velocity if and only if the net force on the object is zero.

• Motion can be shown graphically using a “Motion map,” which has a series of dots representing the
position of the object at equally-spaced intervals of time. Arrows are drawn between the dots to
indicate the object’s velocity, and acceleration appears as changes in the arrows.

0 s
1 s 2 s 3 s 4 s 5 s 6 s

Sample motion map[1]

Momentum

• [kg ⋅m/s] is the SI unit of momentum.

• The momentum of an object is zero if the object is not moving.

• Momentum increases with an object’s mass and an object’s velocity.

• The momentum of any isolated system is conserved.

Energy

• The joule [J] is the SI unit of energy. 1 J = 1kg⋅m2

s2

• Energy is a capacity of an object or system to affect another object or system.

• Work is a transfer of energy into or out of a system by something external to that system.

• Energy of an isolated system is conserved; it cannot be created or destroyed, but it can change form.

• Kinetic energy is energy of motion.

• Kinetic energy can be positive or zero, but never negative.

• Gravitational potential energy is related to an elevated position.

• Spring potential energy and thermal energy are other types of energy that will be dealt with later in
this book.

• Mechanical energy consists of kinetic energy, gravitational potential energy, and spring potential
energy.

• Energy can be shown graphically using an “Energy bar graph.” If the system is isolated, the total
height of all energy bars for the system at any point in time is the same as the total height of all
energy bars at any other point in time.
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Sample energy bar graph[1]
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Mathematical Models

equation restrictions on the validity of the equation

ÐÐ⇀
Fnet ≡ ∑

Ð⇀
F (1.1) -none-

Ð⇀x =Ð⇀x0 +Ð⇀v0 ⋅ t + 1
2
Ð⇀a ⋅ t2 (1.2) only valid when the net force is constant

Ð⇀p =m ⋅Ð⇀v (1.3) -none-

Ð⇀
Fg = −m ⋅ g ŷ (1.4) on the surface of the earth, with +ŷ defined as “up”

Ug =m ⋅ g ⋅ y (1.5) on the surface of the earth, with +ŷ defined as “up”

Ek = 1
2
m ⋅ v2 (1.6) -none-

ÐÐ⇀
Fnet ≡

Ð⇀
∆p
∆t

(1.7)
only valid when the net force is constant

“Newton’s Second Law”

ÐÐ⇀
Fnet =m ⋅Ð⇀a (1.8)

-none-
“Newton’s Second Law”



1.7 Questions

Questions are ordered according to Bloom’s Taxonomy, progressing from regurgitating information (Level
1) to synthesizing new information with previous knowledge to create something new (Level 6). The bold
letters at the beginning of each question indicate whether the question involves Words [W], Graphics [G],
and/or Numbers [N].

Level 1 - Remember

1.1 [W] How are forces defined in this book?

1.2 [W] How is energy defined in this book?

1.3 [W] How is acceleration defined in this book?

1.4 [N] What does a half-arrow over a symbol mean?

1.5 [N] What does it mean in this book if an equation has a box around it?

1.6 [N] What symbol is used to represent momentum?

1.7 [G] What do the arrows represent on a motion map?

1.8 [W & N] Add labels to each equation in the “Mathematical Models” section of the summary that
tell what the symbol to the left of the = sign represents. For example, Equation 1.1 should be labeled
“net force.”

Level 2 - Understand

1.9 [W] What information is included in an object’s velocity that is not included in its speed?

1.10 [N] Give an example of a vector quantity in physics.

1.11 [N] Give an example of a scalar quantity in physics.

1.12 [W] The four main building blocks of physics as described in this book are forces, motion, momentum,
and energy. These are foundational physical concepts because…

(a) describes some of the most easily observed characteristics of an object, like its position
and speed.

(b) and are both conserved for an isolated system, so if we can find their values at
any point in time we know that the same values are also valid at any other point in time.

(c) can cause changes in momentum and energy and they can also cause acceleration,
changing motion.

Level 3 - Apply

1.13 [G] Draw a motion map for an object moving to the left at constant speed.



Level 4 - Analyze

1.14 [G] Consider the free-body diagram in Figure 1.8, where only the horizontal direction is being
considered. Should that figure change if the mass of the rock were doubled? If so, in what way?

1.15 [G] Consider the free-body diagram in Figure 1.13, where only the vertical direction is being consid-
ered. Should that figure change if the mass of the rock were doubled? If so, in what way?

1.16 [W & N] What is the weight of an 80-kg person? Remember to include direction.

1.17 [N] One thing that we should have been able to find in Section 1.5 was the time needed for the rock
to reach the ground when dropped from a height of 2 m. Find that time for the moment when the
rock hits the ground, that is, when y = 0.

1.18 [W & G] Explain how the free-body diagram for the motionless rock in Figure 1.8 can be the same
as that for a moving soccer ball in Figure 1.15.

Level 5 - Evaluate

1.19 [W] In the analysis of a motionless rock in the vertical direction in Section 1.3, it is stated that
there is no wind. If there were a horizontal wind, would it have affected our analysis of the vertical
direction? Explain your answer.

1.20 [W] In the analysis of a rolling soccer ball in Section 1.4, we ignored friction to make the analysis
simpler, and found that the soccer ball would continue rolling in a straight line indefinitely. Was this
a realistic simplification to make? If we had included friction, what would the soccer ball have done?

1.21 [G & N] Estimate the slope of the line in Figure 1.21. Compare it to the net force found in the
column to the right of the figure. Explain why they are the same, or why they are different.

1.22 [W, G, & N] Figure 1.23 shows the energies of a rock when it is released from a height of 2 m and
when it has fallen for 0.5 s.

(a) Reproduce this graph, with correct heights for each bar, and add a third set of bars for the
moment just before the rock hits the ground. You can label the last set of bars “before hitting.”

(b) Find the speed of the rock just before it hits the ground.

(c) Combine the speed of the rock with other information you have about the direction of the rock’s
motion to find the velocity of the rock just before it hits the ground.

Level 6 - Create

1.23 [W, G, & N] At the beginning of this chapter in Figure 1.1 was a template for a concept map.
Hand-draw your own large version of it, adding in the main ideas from this chapter. Leave plenty of
space to add things from other chapters! Here are some examples to help you start:



Force

Motion Energy

Momentum

push or pullpush or pull

Ð
Ð
⇀

F
n
et
=
m
⋅ Ð⇀a

Ð
Ð
⇀

F
n
et
=
m
⋅ Ð⇀a

[J][J]

Kinetic: “of motion”Kinetic: “of motion”

Ð⇀pÐ⇀p

Partially completed concept map[1]

1.24 [W, G, & N] Imagine you are writing a test question related to this chapter. Think of your own
example of a situation that you can analyze using the concepts, graphics, and mathematical analyses
described in this chapter. Describe the situation, and use the tools from this chapter to analyze the
situation as completely as you can, including motion, forces, energy, and momentum.

1.25 [W, G, & N] Think about possible misconceptions about the material in this chapter. Write a
question and an incorrect solution to it that demonstrates a student making such a conceptual error.
This cannot be a simple misuse of a vocabulary word, a unit error, or a mathematical error like
making an addition error or multiplying when addition was needed, unless the error is rooted in a real
misunderstanding about the physics behind the calculation or the misuse of a word. After you have
written the question and incorrect solution, explain what is wrong with the student’s solution, and
write a correct solution to the problem. Note: You may use a question from this chapter that you
got wrong the first time, and explain the initial error in your thinking and how you corrected it.
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Chapter 2

Working in One Dimension

Figure 2.1: Images of a falling ball, taken by a
stationary camera at a rate of 20 frames per second[1]

We have now been introduced to most of the con-
cepts and most of the tools that we will use in this
entire book to study mechanics. We will continue
to look at more and more complicated situations.
In this chapter we will continue to restrict our-
selves to single objects in one dimension, either
horizontal or vertical. We will also continue to
consider only constant forces.



2.1 Units

Words

If you live in the United States or one of a handful
of other countries, you may be bothered by the fact
that this book is using unfamiliar units. There are
good reasons for this.

One reason is that the vast majority of the world
has adopted SI units as the official system of mea-
surement.

A second reason is that SI units are based on fac-
tors of 10 and universal physical quantities like
the speed of light, while most other systems of
measurement, including U.S. Customary units, are
based upon arbitrary numbers and measurements
like the distance between a person’s fingertips and
elbow.

A third reason is that attempting to use U.S. Cus-
tomary units to do physics is difficult and confusing
even for those who use those units on a daily ba-
sis. For example, mass is an important physical
property, but in U.S. Customary units people as-
sume that mass is measured in pounds. In fact,
pounds are a unit of force, and the correct unit of
mass should be slugs, which nobody anywhere in
the world uses, even in the U.S.

For all of these reasons, SI units are the standard
units used in science throughout the world, and also
in this book.

Graphics

Figure 2.2: Rulers often show inches across the
top and centimeters (cm) across the bottom.[1]

The U.S. Customary unit for length is the foot,
and the SI unit for length is the meter. Conversion
factors can be found in the appendices of this book.

Figure 2.3: Weights used in a gym are often
labeled in pounds (lb) and kilograms (kg).[1]

On earth, a 10-kg object experiences a gravitational
force of 98 N, and 98 N corresponds to 22 pounds
of force. On the moon, a 10-kg object experiences
a gravitational force of 16.2 N, or 3.65 pounds.

So mass is not dependent on gravity, but weight
is. This is why we more often refer to an object’s
mass than its weight in physics. They are related,
but they are different.

Numbers

Note: These calculations are wrong! This is
why we avoid U.S. Customary Units!

Consider a 50-pound child. What is the child’s
mass? 50 pounds, right? The acceleration of grav-
ity at the surface of the earth is 32 ft/s2. Weight is
the gravitational force on an object, so a 50-pound
child experiences a gravitational force of 50 pounds
on earth. Using Newton’s second law…

Fy =m ⋅ ay =m ⋅ (−32 ft/s2)

−50 pounds = (50 pounds) ⋅ (−32 ft/s2)

Dividing both sides by -50 pounds gives us …

1 = 32 ft/s2

1 = 32 !? This cannot be correct. Most people
who use U.S. Customary units don’t know that the
correct unit for mass is the slug. A slug is the mass
of an object that weighs 32 pounds at the surface
of the earth. That’s why our calculation is off by a
factor of 32—we used the wrong units.

To do physics using U.S. Customary Units we must
introduce units like the slug that are not in regular
use anywhere in the world. Rather than taking this
step backwards, we step forward into using SI units.

Note: The above calculations are wrong! This
is why we avoid U.S. Customary Units!
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Failing to pay attention to units can be a costly
mistake, as was famously demonstrated in 1999
when NASA lost its $125-million space probe that
was supposed to have gone into orbit around Mars.
The engineers who designed the rocket system used
U.S. Customary Units, but the engineers who de-
signed the guidance system used SI units. When it
came time to enter orbit, the probe instead skipped
off of the Martian atmosphere and was never heard
from again.

This NASA error was simply a matter of not con-
verting all units into the same system. But there is
another type of error that is common for students
who are learning physics. That is having answers
with the wrong “dimensions” or doing calculations
that are dimensionally impossible.

For example, if someone says a baby weighs six
pounds, nine ounces, that makes sense. It is di-
mensionally correct, even though it is not in the SI
units that are preferred in physics. If we want SI
units, we can convert to find the answer we wanted.

But, if someone says that a baby weighs fifteen
inches, that does not make sense. Weight is a force,
and inches are a measure of length, so these two
things have different “dimensions.” In physics, a
“dimension” doesn’t have to refer to length. It
can be any physical quantity: energy, momentum,
acceleration, etc.

Graphing position over time
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Figure 2.4: Position as a function of time[1]

The slope of a graph often provides useful informa-
tion. In Figure 2.4, position is changing in time,
which means that the object must be moving. The
slope of a line is the “rise over the run,” how much
the vertical value changes divided by how much the
horizontal value changes. In this case …

slope = 10m − 0m
5 s − 0 s

= 2m/s

Keeping the units in the slope calculation gives a
hint about the meaning of the slope. The unit
[m/s] is a velocity, and in fact the slope of a posi-
tion vs time graph gives velocity.

If you walk at a constant speed of 4 miles per hour,
what distance will you travel in 30 minutes? Figure
out the answer to that question before continuing.

Hopefully you came to an answer of 2 miles. Whether
you realize it or not, you went through all of these
steps, possibly in a different order:

(1) Compare units, finding both hours and min-
utes.

(2) Unit conversion to make time consistent:

30min ⋅ ( 1 hr

60min
) = 0.5 hr

(3) Combine given information in such a way that
you find an answer with units of distance:

(4mi

1 hr
) ⋅ 0.5 hr = 2mi

Notice that units cancel just like variables and num-
bers. For unit conversion, multiply by a fraction
using the appropriate conversion factor (see the ap-
pendices), in such a way that units cancel to give
the answer required.

This way of canceling only works with multiplica-
tion and division. Two numbers cannot be added
or subtracted unless they have the same units.

The mathematical model used above is…

vavg =
s

∆t
(2.1)

…the average speed vavg is the path length s di-
vided by the time elapsed ∆t. Since the speed was
constant in this example, the average speed is the
speed traveled the entire time.
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2.2 Sliding to the Left

Words

A 170-g hockey puck is sliding to the left for four
seconds across a smooth sheet of ice at a constant
speed of 24 m/s. Frictional force and air resistance
are very small, so we will ignore them. We will
consider only the horizontal direction.

We have looked at a similar situation with a rolling
soccer ball, so some of the analysis will be left for
the end-of-chapter exercises. Here we will try a few
new approaches. This time there is no picture, and
since images are helpful for understanding, we will
start with a sketch. The sketch should include as
much of the given information as possible.

The net force on an object causes a change in ve-
locity over time, i.e. an acceleration. Since the
velocity of this puck is constant, we know that the
net force is zero.

A sliding hockey puck is capable of affecting an-
other object (for example, if it hits an egg it can
break the egg). That means it has energy, in this
case kinetic energy. And since the puck is traveling
at a constant speed, the kinetic energy would also
be constant.

The hockey puck doesn’t have any other type of
mechanical energy, because there is no spring and
it is on the ground.

Graphics

Figure 2.5: Rough sketch of the given physical
situation[1]

The sketch does not need to be beautiful, although
you can feel free to let your artistic skills shine. But
the sketch does need to get across the essential
information about the situation.

puck

Figure 2.6: FBD of a puck with no forces[1]
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Figure 2.7: Energy bar graph of a sliding hockey
puck[1]

Numbers

Assumptions: +x̂ is to the right
friction is negligible

Knowns: m = 170 g = 0.17 kg
t = 4 s
vx = −24m/s
ax = 0
Ff,x = 0

Mass needs to be converted to the SI unit kg:

170 g ⋅ 1 kg

1000 g
= 0.17 kg

vx is negative because conventionally right is posi-
tive. ax is zero because velocity is constant. Ff,x

is the force of friction in the x direction.

Newton’s Second Law says that ÐÐ⇀Fnet =m ⋅Ð⇀a , and
since ax = 0, it follows that Fnet,x = 0.

Kinetic energy is given by…

Ek =
1

2
m ⋅ v2

…so in this case …

Ek =
1

2
(0.17 kg) ⋅ (−24m/s)2= 49 J
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Like the rolling soccer ball that we considered ear-
lier, the hockey puck is moving, so it has momen-
tum. This time, the puck is moving in the opposite
direction from the soccer ball we considered earlier,
so its momentum is also in the opposite direction,
since momentum is a vector. It is important to
remember that momentum also includes direction.

The hockey puck is moving to the left with constant
speed, so its position is changing throughout the
four seconds. We are not given the initial position
of the puck, so we can only describe how much the
position changes, not whether after 4 seconds it
will reach the goal. The change in the position of
an object has a special name, “displacement.”

From the other columns on this page, we can see
that the puck travels -96 m in 4 seconds. The
right direction is conventionally considered postive,
so left is negative. That means the displacement is
96 m to the left. The total distance it moves during
this same time is 96 m. Distance is always positive–
you would never say that your home is negative five
miles from your workplace, right?

In a situation like this, when the object is moving
only in one direction, the displacement is the same
as the distance that an object moves, but if the
object changes direction at any point in its mo-
tion, the total distance it moves will be larger than
its displacement. We will encounter this type of
situation later in this chapter.
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Figure 2.8: Momentum is negative.[1]
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Figure 2.9: A hockey puck sliding to the left.[1]
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Figure 2.10: Puck displacement over time[1]

Momentum is given by…

Ð⇀p =m ⋅Ð⇀v

…so in this case…

px =m ⋅ vx = 0.17 kg ⋅ (−24m/s) = −4.08 kg ⋅m/s

If the net force on an object is constant, as it is in
this situation, position is given by…

Ð⇀x =Ð⇀x0 +Ð⇀v0 ⋅ t +
1

2
Ð⇀a ⋅ t2

…and in this case we are only concerned with the x
direction…

x = x0 + v0x ⋅ t +
�

�
��>

0
1

2
ax ⋅ t2

x = x0 − 24m/s ⋅ t

We are not given x0, but if we subtract it from
both sides we have found the change in x, also
called displacement.

x − x0 =∆x = −24m/s ⋅ t

This allows us to find the displacement for any time
t, including the final time 4 s.

∆xf = −96m
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2.3 Falling to the Ground

Words

A 2.4-kg ball is first dropped from a height 1.3 m
above the ground. Air resistance is very small, so
we will ignore it. We will consider only the vertical
direction. Then the same ball is dropped again,
this time from a height 2.6 m above the ground.

We should be able to find the amount of time that
is needed to reach the ground in each situation and
also the kinetic energy, velocity, and momentum of
the ball just before it hits the ground.

When considering the motion of the ball, we should
note that it is in free-fall, which means that it is
affected only by the force of gravity, and has a con-
stant acceleration that doesn’t depend on the mass
of the ball.

The first “unknown” mentioned in the description
above is the time it takes the ball to fall to the
ground. At first guess, one might think that the
time needed to drop 2.6 m should be twice as much
as the time needed to drop 1.3 m, but this is not
correct. Notice in the images and motion map pro-
vided that in every interval of time the ball moves
a greater distance than in the interval before.

From the images, we can see that the ball fell
roughly the same distance in the first 0.3 seconds
as it did in the next 0.15 seconds. This is because
the longer it falls, the faster it is moving.

Graphics

0.00 s
0.05 s
0.10 s
0.15 s

0.20 s

0.25 s

0.30 s

0.35 s

0.40 s

0.45 s

Figure 2.11: Images and corresponding motion
map of a falling ball. Images were taken every
0.05 seconds.[1]

Comparing with the calculations on the right, we
see that this ball fell slightly less than 1.3 m while
it was being recorded by the camera.

Numbers

Assumptions: +ŷ is upward; no air resistance

Knowns Unknowns
m = 2.4 kg tf

y0 = 1.3 m or 2.6 m Ek,f

yf = 0 vy,f

v0y = 0 py,f

ay = −g

We can find the time needed to hit the ground
by considering the motion of the ball. Since the
acceleration is constant…

Ð⇀x =Ð⇀x0 +Ð⇀v0 ⋅ t +
1

2
Ð⇀a ⋅ t2

…and since we only need the y direction…

y = y0 + v0y ⋅ t +
1

2
ay ⋅ t2

Putting in everything we already know for the mo-
ment just before the ball hits the ground (tf)…

yf = 0 = y0 −
1

2
g ⋅ t2f

Solving for tf , we find …

tf =
√

2 y0
g

tf is 0.515 s when dropped from 1.3 m and 0.728 s
when dropped from 2.6 m.36



The total energy of an object or system of objects
can only change if something external to the system
does work is done on the object(s). This is called
the “Work-Energy Theorem.” So the total gravi-
tational potential energy and kinetic energy of the
ball just before it is released is equal to the total
energy of the ball just before it hits the ground.
This is called conservation of energy.

We will not yet start to consider spring or thermal
energy. Kinetic energy is energy of motion, and
since the ball isn’t moving at the moment it is re-
leased, it doesn’t have any kinetic energy. But we
can think of it has having gravitational potential
energy since it is elevated above the ground.

Just before it hits the ground, it will not have
any gravitational potential energy, so all of the
gravitational potential energy has changed into ki-
netic energy, and the ball dropped from 2.6 m will
have twice as much kinetic energy as the same ball
dropped from 1.3 m.

When the ball is dropped from twice as high, it hits
the ground at a higher speed, but not quite double.
That is because the acceleration is constant the
whole time, and acceleration changes velocity over
time. Not over distance. Since the time is not
double, neither is the final velocity.

The ball started with no momentum, but the force
of gravity acting on it while it was in free-fall gave
the ball momentum in the downward direction, and
as with energy and velocity, when it is dropped from
a higher position it gains more momentum before
reaching the ground.
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Figure 2.12: Energy bar graph of a ball falling
from two different heights[1]

The first set of bars, labeled “1.3 top,” (one of
which has zero height) represents the kinetic and
gravitational potential energies of a ball at the in-
stant it is dropped from 1.3 m. The second two
bars, “1.3 ground,” (again, one of which has zero
height) represent the same ball just before it hits
the ground. The third and fourth sets of bars are
similar, but for a ball dropped from 2.6 m.

Work W is a transfer of energy into or out of a
system.

W = Etot,f −Etot,i (2.2)

…where the subscript tot means “total.” In this
case, we are considering gravity to be a source of
potential energy, not an external force doing work
on the ball, and we the only types of energy we
have are Ug and Ek, so…

Ug,i +Ek,i = Ug,f +Ek,f

…or…

m ⋅ g ⋅ yi +
1

2
m ⋅ v2i =m ⋅ g ⋅ yf +

1

2
m ⋅ v2f

…so in this case…

m ⋅ g ⋅ y0 + 0 = 0 +
1

2
m ⋅ v2f

The term on the right is Ek,f , which is equal to
Ug,i. That is 30.6 J when dropped from 1.3 m and
61.2 J when dropped from 2.6 m.

We can find the final velocities by solving the equa-
tion above for vf :

vf =
√
2 ⋅ g ⋅ y0

Adding in the direction, vy,f = −5.05m/s for 1.3 m
and vy,f = −7.14m/s for 2.6 m

We can use m and vy,f to find py,f :

py,f =m ⋅ vy,f

That is, -12.1 kg⋅m
s

for 1.3 m and -17.1 kg⋅m
s

for
2.6 m
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2.4 Being Thrown to the Ground

Words

A 2.4-kg ball is thrown straight downward with a
speed of 5.05 m/s from a height 1.3 m above the
ground. Air resistance is very small, so we will ig-
nore it. We will consider only the vertical direction,
and only after the ball has been released.

We should be able to find the amount of time that
is needed to reach the ground and also the kinetic
energy, velocity, and momentum of the ball just
before it hits the ground.

The ball is in free-fall, which tells us that it is ac-
celerating downward because of gravity. The ball is
being thrown downward, which also indicates that
a force was used to throw the ball, but this situation
doesn’t include the actual throwing. This situation
describes the ball after it is released, so there is NO
“force of throwing” in this situation. If we looked
at how the ball was thrown, then there would be a
normal force from a hand or something similar to
consider. But in this situation the ball has already
been thrown, so there is no hand to consider.

There are many different correct ways to go about
finding all of the unknown quantities. To demon-
strate this, since we know the net force on the ball,
the calculations in the right column can be done for
final momentum after finding the final time when
the ball reaches the ground. In the previous sec-
tion of this book, momentum was the last quantity
found.

Graphics

If we are not provided with an image of some kind,
again we should make a sketch of the situation.

Figure 2.13: Rough sketch of a ball that was
thrown downward[1]

Making a sketch like this helps us to see and re-
member important information, for example in this
case the force and the initial velocity are in the
same direction.

Fg

ball

Figure 2.14: FBD of a ball in free-fall[1]

Numbers

Assumptions: +ŷ is upward; no air resistance;
start after ball has been released

Knowns Unknowns
m = 2.4 kg tf

y0 = 1.3m Ek,f

yf = 0 vy,f

v0y = −5.05m/s py,f

ay = −g

We can find tf by considering the motion of the
ball. Since the acceleration is constant…

yf = y0 + v0y ⋅ tf +
1

2
ay ⋅ t2f

…which can be rearranged to…

1

2
ay ⋅ t2f + v0y ⋅ tf + (y0 − yf) = 0

tf and t2f both appear in this equation, so we can
use the quadratic formula to get two solutions:
0.213 s and -1.24 s. The negative solution is math-
ematically correct but cannot physically be the so-
lution, so tf = 0.213 s.

Since in this situation ÐÐ⇀Fnet =
Ð⇀
Fg, we can use New-

ton’s Second Lawto find the final momentum.
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The momentum of the ball just before it hits the
ground is directed downward, and is actually equal
to the final momentum in the last section, for a
similar ball that was dropped from a higher initial
position. Since the balls have the same mass and
the same final momentum, they also have the same
final velocity.

We can again use conservation of energy to find
the final kinetic energy, but this time we need to
remember that the ball also starts with kinetic en-
ergy. As it falls, its kinetic energy increases as its
gravitational potential energy decreases, so that its
total energy stays constant.

Just before hitting the ground, all of the ball’s grav-
itational potential energy has transformed into ki-
netic energy. For this situation, since the ball has
the same mass and the same final velocity as the
ball dropped from the higher position in the last
section, the two balls also have the same final ki-
netic energy.

The final condition of the ball described in this sec-
tion is the same as that of the ball dropped from
a higher position in section 2.3. That is because
when the ball dropped from the higher position
reaches the same height as the ball described in
this section, it has the same velocity as the initial
velocity of the ball described in this section. It ap-
pears that only the time is different, but the time
found in this section is equal to the time needed
for the ball in section 2.3 to travel the last 1.3 m
of its fall.
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Figure 2.15: Energy bar graph for a ball being
thrown to the ground, showing energy when it is
just thrown and just before it hits the ground[1]
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Figure 2.16: Velocity during free-fall[1]

∆py

∆t
=
py,f − py,i

∆t
= −m ⋅ g

Rearranging,

py,f = −m ⋅ g ⋅∆t + p0y
= −m ⋅ g ⋅∆t +m ⋅ v0y = −17.1 kg ⋅m/s

Now we can find the final velocity of the ball.

py,f =m ⋅ vy,f , so . . .

vy,f =
py,f

m
= −7.14m/s

We can use work and energy, Equation 2.2, to find
Ek,f , and since no external work W is being done…

Ug,i +Ek,i = Ug,f +Ek,f

m ⋅ g ⋅ y0 +
1

2
m ⋅ v20 =m ⋅ g ⋅ yf +Ek,f

…which gives Ek,f = 61.2 J.

We could also have found the final velocities using
the knowledge that acceleration is the change in
velocity over time…

Ð⇀a = ∆Ð⇀v
∆t
=
Ð⇀vf −Ð⇀vi
∆t

(2.3)

The y components of this equation can be rear-
ranged to solve for vy,f :

vy,f = vy,i + ay ⋅∆t
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2.5 Being Thrown Upward

Words

A 2.4-kg ball is thrown straight upward with a
speed of 5.05 m/s from a height 1.3 m above the
ground. Air resistance is very small, so we will ig-
nore it. We will consider only the vertical direction,
and only after the ball has been released.

We should be able to find the height at the peak of
the ball’s flight, the amount of time that is needed
to reach the peak, and also the kinetic energy, grav-
itational potential energy, velocity, and momentum
of the ball at the peak.

The ball is in free-fall, which tells us that it is ac-
celerating downward because of gravity. This is
almost exactly the same as the situation consid-
ered in the last section–the only difference is that
now the ball has been thrown upward, opposite the
force of gravity. Again, there is no force from the
hand that threw it (or of whatever else might have
thrown it), because the question begins with the
ball already having been thrown.

In every situation up until this one, a force has
increased both the speed and the magnitude of the
momentum of the object we are considering. This
time the force does the opposite. That is because
the initial velocity is opposite the direction of the
net force.

The ball still accelerates in the direction of the net
force, but the acceleration slows down the ball in-
stead of speeding it up!

Graphics

Again we should make a sketch. This is the same as
the sketch from section 2.4 except that one arrow
changed direction.

Figure 2.17: Rough sketch of a ball that was
thrown upward[1]

Fg

ball

Figure 2.18: FBD of a ball in free-fall[1]

A FBD shows downward force with no indication
of upward velocity, exactly as in section 2.4.

Numbers

Assumptions: +ŷ is upward; no air resistance;
start after ball has been released

Knowns Unknowns
m = 2.4 kg yf

y0 = 1.3m tf

v0y = 5.05m/s Ek,f

ay = −g Ug,f

vy,f

py,f

Note that the only changes to the “knowns” from
section 2.4 are that there is no “-” on v0y and yf
is now unknown. Ug,f has also been added as an
unknown.

Three of the six unknowns are easy to find, once
we realize that at the peak the ball is not moving.
That makes Ek,f = 0, vy,f = 0, and py,f = 0.
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In regular English, it is normal to refer to “slow-
ing down” as “decelerating,” and “speeding up” as
“accelerating.” That is not the case in physics. We
will always use the word “acceleration” to indicate
that an object’s velocity is changing. Sometimes
the magnitude of the velocity (speed) may be in-
creasing; sometimes it may be decreasing; and in
some cases the speed may be staying constant but
the direction may be changing. To avoid confusion,
we will refer to all of these situations as accelera-
tion.

We can again use conservation of energy to find
the final gravitational potential energy. At the be-
ginning, the ball has both gravitational potential
energy, since it is elevated above the ground, and
also kinetic energy, since it is moving. As it goes
upward, it slows down, ultimately stopping when it
reaches the peak. That means it is losing kinetic
energy, and all of the kinetic energy it loses is trans-
forming into gravitational potential energy. So at
the peak, all of its initial energy has changed into
gravitational potential energy.

When the ball reaches the peak, its height and its
gravitational potential energy are at a maximum,
while its speed and kinetic energy are at a min-
imum. The momentum was positive as the ball
was going up, since “upward” is usually considered
a positive direction. At the top, the momentum
is zero, and unless something intervenes, a short
time later the ball will be moving downward, so
the momentum will be negative.
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Figure 2.19: Velocity during free-fall[1]
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Figure 2.20: Energy bar graph for a ball being
thrown upward, showing energy when it is just
thrown and at the peak of its flight[1]

We know the acceleration and the initial and fi-
nal velocity of the ball, so we can rearrange the ŷ
components of Equation 2.3 to find tf :

∆t = tf − t0 =
vy,f − v0y

ay

…giving tf = 0.515 s, using t0 = 0.

We can again use conservation of energy with no
external work, Equation 2.2, to find Ug,f .

Ug,i +Ek,i = Ug,f +Ek,f

m ⋅ g ⋅ y0 +
1

2
m ⋅ v20 = Ug,f + 0

…which gives Ug,f = 61.2 J.

The final height can be found from the gravita-
tional potential energy.

Ug,f =m ⋅ g ⋅ yf

This gives yf = 2.6m.
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2.6 Up and Back Down

Words

A 2.4-kg ball is thrown straight upward with a
speed of 5.05 m/s from a height 1.3 m above the
ground. Air resistance is very small, so we will ig-
nore it. We will consider only the vertical direction,
and only after the ball has been released.

In Section 2.5 we considered this exact same situ-
ation, but stopped when the ball reached the peak
of its flight. This time we will consider the entire
flight of the ball until the moment just before it
hits the ground. Let’s focus on the initial condi-
tion of the ball when it has just been thrown, the
peak of its flight, the time when it passes the same
height from which it was thrown, and the moment
just before it hits the ground.

Again the ball is in free-fall, which tells us that
it has a constant downward acceleration because
of gravity. That acceleration is valid for the en-
tire time that the ball is in the air. Some people
are surprised by this, thinking that the acceleration
should be zero at the peak of the ball’s flight, but
if that were true then the ball would just stay there
instead of coming back down.

If we look back at the previous sections of this chap-
ter, we have already found all of the pieces of in-
formation for the ball as it travels along this entire
path. We just need to put it all together.

Graphics

An initial sketch if this situation would look exactly
the same as the sketch from Section 2.5. So instead
let’s try to sketch a motion map for the ball.

Figure 2.21: An attempt at a motion map. The
ball’s path turns back on itself, making a motion
map difficult to read. The numbers give the order
of the points, but the time scale is not given.[1]

A motion map is not the best way to show the
motion of an object that retraces its path.

Numbers

Assumptions: +ŷ is upward; no air resistance;
start after ball has been released

Knowns Unknowns
m = 2.4 kg ypeak, ydown

y0 = 1.3 m tpeak, tdown, tbottom

ybottom = 0 Ek,peak,Ek,down,Ek,bottom

v0y = 5.05m/s Ug,peak, Ug,down, Ug,bottom

ay = −g vy,peak, vy,down, vy,bottom

py,peak, py,down, py,bottom

“Peak” is for the peak of the ball’s flight; “down”
is when it passes the same height from which it was
thrown; “bottom” is just before it hits the ground.
We have already found the time required to go from
each of these positions to the next:

Description Interval Where found
t = 0 to tpeak 0.515 s Section 2.5
tpeak to tdown 0.515 s Section 2.3
tdown to tbottom 0.213 s Section 2.4

Section 2.3 gives the time for tpeak to tdown if we
realize that the time required for a ball to fall 1.3 m
does not depend on the height from which it was
dropped. So the ball that was dropped from a
height of 1.3 m reaches the ground in the same
amount of time that a ball dropped from a height
of 2.6 m falls 1.3 m.
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The ball starts out moving upward, steadily slowing
down until it reaches the peak of its flight, so that
its velocity is zero at the peak. It doesn’t stay at
the peak, but turns around and falls downward,
steadily speeding up until it hits the ground. When
the ball is falling and passes the same point from
which it was originally thrown, it will have the same
speed that it started with, but the direction will
have changed from upward to downward.

If you graph the position as a function of time,
the graph forms a parabola shape with its opening
pointed downward.

If you graph the velocity as a function of time,
the graph forms a straight line, because the accel-
eration is the same during the entire flight: the
acceleration caused by gravity in the downward di-
rection.

Momentum follows the same pattern as velocity.
Initially it is upward, and it decreases as the ball
goes upward. At the peak, the ball has no mo-
mentum, and on the way down its momentum in-
creases, this time in the downward direction.

Initially, the ball has some gravitational potential
energy, since it is above ground level, and it also
has some kinetic energy, since it is moving. At the
peak of its flight the ball is not moving, so it has
no kinetic energy. All of the kinetic energy has
changed to gravitational potential energy at that
point. As the ball falls, the gravitational energy
transforms into kinetic energy until by the time it
is about to hit the ground it has only kinetic energy.
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Figure 2.22: Position & velocity for ball in
free-fall[1]
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Figure 2.23: Energy bars for ball in free-fall.[1]

Since the acceleration is constant and we are con-
sidering only the vertical direction…

y = y0 + v0y ⋅ t +
1

2
ay ⋅ t2

In this situation…

y = 1.3m + 5.05m/s ⋅ t − 1

2
(9.8m/s2) ⋅ t2

And for the velocity we can rearrange Equation 2.3
to find the velocity in the ŷ direction at any time
t:

vy = v0y + ay ⋅ t
vy = 5.05m/s − 9.8m/s2 ⋅ t

Momentum is mass times velocity, so…

py =m ⋅ vy =m ⋅ (v0y + ay ⋅ t)
= 2.4 kg ⋅ (5.05m/s) − 2.4 kg ⋅ 9.8m/s2 ⋅ t

Gravitational potential energy is given by Ug =m ⋅
g ⋅ y, so…

Ug = 2.4 kg ⋅ 9.8m/s2 ⋅ y

Kinetic energy is given by Ek = 1
2
m ⋅ v2, so…

Ek =
1

2
(2.4 kg) ⋅ vy2
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2.7 Accelerating in a Car

Words

Up to this point, we have only worked with acceler-
ation due to the force of gravity. But other forces
can cause acceleration. Now we will consider a car
sitting motionless, accelerating to a given velocity,
and maintaining that velocity.

A Ferrari Enzo with a mass of 1500 kg can go from
zero to 60 mph in 3 seconds. Assume that it ac-
celerates uniformly for 3 s and then maintains its
speed for another 3 s. Describe the net force on
the car, the energy of the car, the displacement of
the car, and the momentum of the car during these
time intervals.

Let’s start by just imagining ourselves in the Fer-
rari. What would it feel like? We would feel the car
accelerating as we started, rapidly gaining speed.
It is interesting to note that it actually feels like
our body is shoved back against the seat as the
seat tries to accelerate forward through us. Then it
would feel different after the first three seconds be-
cause we would just be moving at constant speed.
In fact, if you are moving at constant speed it feels
almost like you are not moving at all, unless you are
watching the scenery go past outside the window.

Since it is an unbalanced force that causes accel-
eration, there must be a large net force for the
first three seconds pushing us forward, but then the
net force drops to zero after three seconds. That
doesn’t necessarily mean that there are no forces
after three seconds but the forces are balanced.

Graphics

Figure 2.24: A Ferrari Enzo.[6]

Motion Map

0 s
1 s 2 s 3 s 4 s 5 s 6 s

Figure 2.25: A car accelerating for 3 seconds and
then moving at constant velocity for 3 seconds[1]

Acceleration on a motion map appears as a change
in the arrows from one dot to the next. For the
first three seconds, the arrows are getting longer
to the right, showing that there is acceleration to
the right, and thus a net force to the right. After
three seconds the arrows are all the same length
and the same direction, showing that there is no
acceleration, so zero net force.

Numbers

This situation has two distinct parts that need to be
separated mathematically. Acceleration is constant
in the first 3 s, and constant in the second 3 s.
But since they are different, we will have one set
of mathematical models from t = 0 to t = 3 s and
another from t = 3 s to t = 6 s.

Knowns Unknowns
m = 1500 kg

ÐÐÐÐ⇀
Fnet,0−3 ;

ÐÐÐÐ⇀
Fnet,3−6

v0x = 0 E for the whole time
vx,3−6 = 60mph ∆x0−3 ; ∆x3−6

Ð⇀p for the whole time

Let’s begin by finding the net force. Using New-
ton’s Second Law, we find…

ÐÐ⇀
Fnet ≡

Ð⇀
∆p

∆t
=
(Ð⇀pf −Ð⇀pi)

∆t
=
m ⋅ (Ð⇀vf −Ð⇀vi)

∆t

Velocity is not changing from 3 to 6 s, so
ÐÐÐÐ⇀
Fnet,3−6 = 0. And from 0 to 3 s…

ÐÐ⇀
Fnet =

1500 kg ⋅ (60mph x̂ − 0)
3 s

We still need to convert the units, so…

ÐÐ⇀
Fnet = (

1500 kg ⋅ 60mph

3 s
)(1609m

1mile
)(1 hour

3600 s
) x̂

ÐÐÐÐ⇀
Fnet,0−3 = 1.34 × 104 N x̂
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What about the energy of the car? If we are on
flat ground, the height is not changing, so we don’t
need to worry about gravitational potential energy.
We can focus on just the horizontal direction in
this situation.

Initially the car is not moving, so there is no kinetic
energy. But over the first three seconds the speed
of the car is increasing, so the kinetic energy is also
increasing. After the first three seconds the speed
is constant, so for the last three seconds the kinetic
energy remains constant at whatever value it had
after the first three seconds.

Energy is conserved in a closed system, so if the
kinetic energy is increasing then energy is coming
from somewhere. This Ferrari burns gasoline, so
the source of energy is the chemical potential en-
ergy stored in the gasoline. Tracing the energy
transformations in the engine and drive train is
complicated, but the final result is that the car uses
an external frictional force between the tires and
the road to push itself forward. This force does
work on the car as it moves, increasing its kinetic
energy.

The car’s momentum will change in the same way
that its velocity changes. So initially it has no mo-
mentum; then momentum steadily increases for the
first three seconds while a constant net force is ap-
plied; and finally the momentum remains constant
after three seconds when there is no net force act-
ing on the car.
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Figure 2.26: A force in the direction of motion
does an amount of work equal to the area under
the curve in a Force-vs-Position graph.[1]
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Figure 2.27: Momentum changes while there is a
net force, then remains constant when the net
force is zero.[1]

The net force acting on the car does work on the
car, giving it kinetic energy. The amount of work
done by the force depends on the displacement:

Wnet =
ÐÐ⇀
Fnet ⋅

Ð⇀
∆x = Fnet ⋅∆x ⋅ cos(θ) (2.4)

…where θ is the angle between ÐÐ⇀Fnet and Ð⇀∆x.

This work will often be used in conjunction with
Equation 2.2 to find the change in energy of a sys-
tem. In this example, we are only working with
kinetic energy. We know the mass of the car and
its velocity at t = 0 and t = 3 s, so that gives us
the kinetic energy at each of these times. Using
Equation 2.4 and Equation 2.2 we can find the dis-
placement of the car during that time.

∆Ek =Wnet =
ÐÐ⇀
Fnet ⋅

Ð⇀
∆x = Fnet ⋅∆x ⋅ cos(0)

θ is zero because ÐÐ⇀Fnet and Ð⇀∆x are in the same
direction. Rearranging to solve for ∆x gives…

∆x0−3 =
∆Ek,0−3

Fnet,0−3
= 5.39 × 105 J
1.34 × 104 N

= 40m

Now we can find ∆x3−6:

x = x0 + v0x ⋅ t +
1

2
ax ⋅ t2

With ax = 0 and using 3 s as our “t = 0”, …

∆x3−6 = (x − x0) = v0x ⋅ t + 0 = 60mph ⋅ 3 s = 80m

45



2.8 Braking in a Car

Words

A Ferrari Enzo with a mass of 1500 kg is traveling
at 26.8 m/s and suddenly applies its brakes, giving
it an acceleration of 15m/s2 in the direction oppo-
site its motion. Describe the net force on the car,
the car’s momentum, the time required to stop,
and the stopping distance.

If the car had been traveling at twice that speed
and then braked with the same acceleration, by how
much would the net force, the momentum, the time
required to stop, and the stopping distance change?

When we are in a car that is braking, its speed is
decreasing. That means the acceleration is oppo-
site the direction of motion, so if your car is moving
forward then the acceleration is backwards.

Again, since it is force that causes acceleration,
the net force must be pointing in the direction
opposite the car’s motion. The acceleration de-
scribed above, 15m/s2, is larger than the accelera-
tion caused by gravity on the surface of the earth,
so this car must be braking very hard. We should
expect it to stop quickly.

The car’s momentum changes along with veloc-
ity, starting large and steadily decreasing until it
reaches zero when the car is stopped.

Graphics

Figure 2.28: A Ferrari Enzo.[6]

Free Body Diagram

Ff

car

Figure 2.29: FBD of a car that is traveling to the
right and braking, horizontal direction only[1]

Numbers

Assumptions: initial velocity is in the +x̂ direction

Knowns Unknowns
m = 1500 kg ÐÐ⇀

Fnet

v0x = 26.8m/s tf

ax = −15m/s2 ∆x

vf = 0

Note that the acceleration is negative, while the
initial velocity is positive. This is equivalent to the
statement that acceleration is opposite the direc-
tion of motion. The stopping distance would be
the change in position, in other words, the displace-
ment.

Let’s begin by finding the net force. Using New-
ton’s Second Law…

ÐÐ⇀
Fnet =m ⋅Ð⇀a = 1500 kg ⋅ (−15m/s2 x̂)

= −2.25 × 104 N x̂

Since the acceleration is constant until the car stops
moving, this force is also constant until the car
stops moving.

Since we have the mass and the initial and final ve-
locities, we can find the initial and final momentum
of the car:
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What would be different if the car had been trav-
eling at twice the speed, and had braked with the
same acceleration?

Since force is directly related to acceleration and
not directly related to velocity, the frictional force
of braking would be the same.

The final momentum would still be zero, but the
initial momentum would double along with the ve-
locity.

Remember that acceleration is a change in velocity
over time. Since we are more familiar with speed
and distance, let’s use that as an example. Speed
is a distance over time. If you travel at the same
speed but need to go double the distance, the time
would have to double, right? It is the same with
acceleration and velocity:

• Speed is a distance over time; double the dis-
tance means double the time.

• Acceleration is velocity over time; double the
velocity means double the time.

The distance traveled before stopping would cer-
tainly be longer if we started with double the speed
and braked with the same acceleration. In fact the
distance increases by much more than double. If
you start at double the speed, it takes half of the
braking time just to get down to the original speed;
in the first half of the braking time you would move
a much farther distance than if you had been trav-
eling at the original speed that whole time. And
you still wouldn’t have stopped!
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Figure 2.30: Velocity vs time, braking.[1]

The area under the curve of a velocity vs time graph
is equal to the displacement. In this case, the max-
imum velocity is 26.8 m/s and the maximum time
is 1.79 s. The area of a triangle is:

Atriangle =
1

2
b ⋅ h

…where b is the triangle’s base and h is its height.
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Figure 2.31: Velocity vs time, braking.[1]

Ð⇀p0 = 1500 kg ⋅ 26.8m/s x̂ = 4.02 × 104 kg ⋅m/s x̂

Ð⇀pf =m ⋅Ð⇀vf = 0

The time required to stop can be found using Equa-
tion 2.3:

Ð⇀a =
Ð⇀
∆v

∆t

If we set ti = 0, this can be rearranged to…

t =
Ð⇀vf −Ð⇀v0
Ð⇀a

= 0 − 26.8m/s x̂
−15m/s2 x̂

= 1.79 s

The displacement can be found by considering en-
ergy. Initially the car has kinetic energy, and the
braking force acting over a distance does negative
work on the car, removing all of its kinetic energy:

∆Ek = Ek,f −Ek,i = 0 −
1

2
m ⋅ v20x

And according to Equation 2.4 and Equation 2.2…

∆Ek =Wnet =
ÐÐ⇀
Fnet ⋅

Ð⇀
∆x

Setting these equal to each other and solving for
∆x gives…

∆x =
− 1

2
m ⋅ v20x
ÐÐ⇀
Fnet

= −5.39 × 10
5 J

−2.25 × 104 N
= 23.9m
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2.9 Summary

Chapter summaries in this book are ordered by concept, not necessarily in the order in which they are
presented in the chapter. Mathematical models are grouped together at the end of each summary. See the
appendices for the meanings of all symbols used in this book.

General

• Units in an equation cancel just like variables or numbers.

• Numbers with different dimensions can be multiplied or divided, but not added or subtracted.

• Physical quantities should be converted to SI units before being used in calculations.

• When thinking about a physical scenario, it is often helpful to make a sketch.

• Sometimes a calculator can give answers that are correct mathematically but cannot be physically
correct.

• Conventionally, right is the positive “x” direction x̂.

• Conventionally, up is the positive “y” direction ŷ.

+x̂

+ŷ

Conventional x and y directions[1]

Forces

• In U.S. Customary units, pound is the unit of force; slug is the unit of mass.

• If a force acts in the direction opposite to the velocity of an object it will slow the object down.

• A force acting in the direction of an object’s displacement does positive work on the object.

• A force acting opposite the direction of an object’s displacement does negative work on the object.

Motion

• The change in the position of an object is called its displacement.

• Displacement can be positive or negative.

• The total distance an object moves, or the length of the path it follows, is always positive.

• Acceleration refers to a change in velocity whether the speed is increasing, decreasing, or staying the
same.

• The acceleration of an object in free-fall is constant throughout the time the object is in the air, even
if it is not moving at some point in time during the flight.

• The slope of the line on either a position-vs-time graph or a displacement-vs-time graph is the velocity.
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Sample position vs time graph[1]

• The slope of the line on a velocity-vs-time graph is the acceleration.

• The area under the curve of a velocity-vs-time graph is the displacement of the object.
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Sample velocity vs time graph[1]

Momentum

• Momentum is negative if velocity is negative.

• The slope of the line on a momentum-vs-time graph is the net force on the object.
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Sample momentum vs time graph[1]

Energy

• The area under the curve of a force-vs-position graph is the amount of work done by the force.
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Sample force vs position graph[1]

Mathematical Models

equation restrictions on the validity of the equation

vavg = s
∆t

(2.1) -none-

W = Etot,f −Etot,i (2.2)
-none-

“Work-Energy Theorem”

Ð⇀a = ∆Ð⇀v
∆t
=
Ð⇀vf−
Ð⇀vi

∆t
(2.3) only valid when the net force is constant

Wnet =
ÐÐ⇀
Fnet ⋅

Ð⇀
∆x = Fnet ⋅∆x ⋅ cos(θ) (2.4) only valid when the net force is constant



2.10 Questions

Questions are ordered according to Bloom’s Taxonomy, progressing from regurgitating information (Level
1) to synthesizing new information with previous knowledge to create something new (Level 6). The bold
letters at the beginning of each question indicate whether the question involves Words [W], Graphics [G],
and/or Numbers [N]. See the appendices for conversion factors.

Level 1 - Remember

2.1 [W] List two reasons for using SI units instead of U.S. Customary Units in physics.

2.2 [N] Give the appropriate SI units and U.S. Customary units for each of the following:

SI (Système International) Unit U.S. Customary Unit
length
force
mass
speed

2.3 [G] How does one find work from a graph of force vs. position?

2.4 [G] How does one find force from a graph of momentum vs. time?

2.5 [G] How does one find acceleration from a graph of velocity vs. time?

2.6 [G] How does one find displacement from a graph of velocity vs. time?

2.7 [G] How does one find velocity from a graph of position vs. time?

2.8 [W & N] Add labels to each equation in the “Mathematical Models” section of the summary that
tell what the symbol to the left of the = sign represents.

Level 2 - Understand

2.9 [W] The word “acceleration” is used in physics to mean a change in velocity. What is happening to
an object’s speed when it is accelerating?

Level 3 - Apply

2.10 [G] Draw a free-body diagram for the ball in Section 2.3.

2.11 [G & N] What is the total displacement of the ball described in Section 2.6, from the time it is
thrown to the moment just before it hits the ground? Remember that displacement is a vector.

2.12 [G & N] What is the total distance (path length) traveled for the ball described in Section 2.6, from
the time it is thrown to the moment just before it hits the ground?

2.13 [G] Figure 2.22 shows a position-vs-time graph and its corresponding velocity-vs-time graph. Create
a corresponding acceleration-vs-time that goes along with these other two graphs.

2.14 [G & N] Create position-vs-time, velocity-vs-time, and acceleration-vs-time graphs for the soccer ball
from Section 1.4, horizontal direction only.



2.15 [G & N] Create position-vs-time, velocity-vs-time, and acceleration-vs-time graphs for the rock from
Section 1.5, vertical direction only.

2.16 [W] Describe the momentum of a ball that is dropped from the time it leaves a person’s hand until
the time just before it hits the ground.

2.17 [G] Section 2.7 describes a physical situation of a car accelerating and then traveling at constant
speed.

(a) Draw a velocity vs. time graph for the car in this situation. Be sure to use SI units.
(b) Use the graph to find the displacement of the car in the first 3 s.
(c) Use the graph to find the displacement of the car in the second 3 s.
(d) Use the graph to find the acceleration of the car in the first 3 s.
(e) Use the graph to find the acceleration of the car in the second 3 s.

Level 4 - Analyze

2.18 [G] Figure 2.4 shows a graph of position vs. time for an object that is moving at 2 m/s. Draw a
similar graph for an object that is moving at 5 m/s for 10 s.

2.19 [W, G, & N] In Section 2.2, there was a 170-g hockey puck sliding across a sheet of ice. If the mass
of the hockey puck had been 340 g and everything else in the situation stayed the same, which of the
following would change?

(a) The sketch at the beginning of Section 2.2 (and make a new sketch if any change is needed)
(b) The free body diagram in Section 2.2 (and make a new FBD if any change is needed)
(c) The calculation of kinetic energy in Section 2.2 (and find the new value for the kinetic energy if

any change is needed)
(d) The motion map in Section 2.2 (and make a new motion map if any change is needed)
(e) The calculation of momentum in Section 2.2 (and find the new value for the momentum if any

change is needed)
(f) The calculation of displacement in Section 2.2 (and find the new value for the displacement if

any change is needed)

2.20 [W, G, & N] In Section 2.2, there was a hockey puck sliding across a sheet of ice at 24 m/s. If
the speed of the hockey puck had been 12 m/s and everything else in the situation stayed the same,
which of the following would change?

(a) The sketch at the beginning of Section 2.2 (and make a new sketch if any change is needed)
(b) The free body diagram in Section 2.2 (and make a new FBD if any change is needed)
(c) The calculation of kinetic energy in Section 2.2 (and find the new value for the kinetic energy if

any change is needed)
(d) The motion map in Section 2.2 (and make a new motion map if any change is needed)
(e) The calculation of momentum in Section 2.2 (and find the new value for the momentum if any

change is needed)
(f) The calculation of displacement in Section 2.2 (and find the new value for the displacement if

any change is needed)

2.21 [N] In the last line of the ”Numbers” column of Section 2.7, it appears to say that 60 ⋅3 = 80. Should
it be 180?



Level 5 - Evaluate

2.22 [N] Compare the change in gravitational potential energy for an object of mass m falling a distance
d to the work done by the force of gravity on an object of mass m falling a distance d. Explain your
reasoning.

2.23 [N] Compare the work done bringing an object of mass m from a complete stop to a speed v over
a distance d to the work done bringing that same object from the same speed v to a stop over a
distance d/4. Explain your reasoning.

Level 6 - Create

2.24 [W, G, & N] At the beginning of Chapter 1 in Figure 1.1 was a template for a concept map. Add
the main ideas from this chapter to the concept map that you began for the question at the end of
Chapter 1.

2.25 [W, G, & N] Imagine you are writing a test question related to this chapter. Think of your own
example of a situation that you can analyze using the concepts, graphics, and mathematical analyses
described in this chapter. Describe the situation, and use the tools from this chapter to analyze the
situation as completely as you can, including motion, forces, energy, and momentum.

2.26 [W, G, & N] Think about possible misconceptions about the material in this chapter. Write a
question and an incorrect solution to it that demonstrates a student making such a conceptual error.
This cannot be a simple misuse of a vocabulary word, a unit error, or a mathematical error like
making an addition error or multiplying when addition was needed, unless the error is rooted in a real
misunderstanding about the physics behind the calculation or the misuse of a word. After you have
written the question and incorrect solution, explain what is wrong with the student’s solution, and
write a correct solution to the problem. Note: You may use a question from this chapter that you
got wrong the first time, and explain the initial error in your thinking and how you corrected it.





Chapter 3

Two Objects

Figure 3.1: Here we see two objects that have
interacted with each other. To understand the
collision, we need to take both objects into account,
and we will have to decide whether to look at the
collision from the reference frame of a person in the
truck, a person in the car, or a person standing by the
side of the road.[7]

Up to this point we have only been looking at a
single object. That object has always interacted
with something else: A soccer ball rolling across
the ground ; a hockey puck sliding on ice; a ball
falling under the influence of the earth’s gravity;
but we have never stopped to consider the second
object and how it interacts with the first.

We will consider three new things in this chapter:
reference frames (also called frames of reference
or points of view), force pairs, and conversion of
kinetic energy to thermal energy in collisions or
when objects are sliding against each other.

Whenever we look at a physical situation, we need
to be mindful of our reference frame. Up to this
point, the surface of the earth has been used as a
reference, and is assumed to be fixed in place as we
consider the physics of each situation. But we can
also use moving reference frames. For example,
if you are a passenger in a moving car, it is still
quite easy to pick up an object that is sitting next
to you, even though that object is traveling at high
speed compared to the ground outside of the car.
As long as the car is moving at a constant velocity,
the physics inside the car is just the same as if the
car were sitting still.

The idea of force pairs comes about because forces are always interactions between objects. If an object
exerts a force on another object, the second object exerts the same amount of force back on the first.

Collisions are often divided into categories, elastic or inelastic, depending on what happens during the
collision. In a “completely inelastic” collision the objects stick together and a large amount of kinetic energy
is converted into thermal energy. In a “perfectly elastic” collision the objects bounce off of each other and
no kinetic energy is converted to thermal energy. Most collisions fall between these two extremes, with
objects deforming but not sticking together. These collisions are considered elastic or inelastic depending
on the amount of kinetic energy that was converted to thermal energy.



3.1 Reference Frames

Words

Imagine standing on a bridge over the highway in
the picture on the right. You would look at these
vehicles and say that the two cars are going North
at 25 m/s and the truck is going South at 25 m/s.
You are comparing the velocities of the vehicles to
your own velocity, which is zero if the surface of
the earth is stationary.

Of course the surface of the earth is not stationary
because the earth is spinning and orbiting the sun!
But in many situations we can ignore the motion
of the earth itself. Since you are not moving with
respect to the surface of the earth, we say that
you are looking at the vehicles from the earth’s
reference frame.

What are the velocities of the vehicles in each oth-
ers’ reference frames?

To consider other reference frames, we just need
to imagine ourselves in a different place. What
would this situation look like if we were inside the
black car? Since the white car that is ahead of us is
moving at the same speed, in the same direction as
us, it will actually appear not to be moving at all.
If it is 20 meters ahead of us, it will stay 20 meters
ahead of us as long as neither of us accelerates.

Graphics

Figure 3.2: Two cars traveling North and a truck
traveling South, all at 25 m/s.[8]

Figure 3.3: The earth’s reference frame[9]

Numbers

We will need to introduce new notation for veloc-
ity in different reference frames: “ÐÐ⇀v1←2” will mean
“the velocity of object 1 as seen by object 2.” Us-
ing this notation, making North the positive direc-
tion, and referring to the cars just as “white” and
“black”…

Knowns Unknowns
ÐÐÐÐÐÐÐ⇀vtruck←earth = −25m/s ÐÐÐÐÐÐÐ⇀vwhite←truck

ÐÐÐÐÐÐÐ⇀vwhite←earth = +25m/s ÐÐÐÐÐÐÐ⇀vblack←truck

ÐÐÐÐÐÐÐ⇀vblack←earth = +25m/s ÐÐÐÐÐÐÐ⇀vtruck←white

ÐÐÐÐÐÐÐ⇀vblack←white

ÐÐÐÐÐÐÐ⇀vtruck←black

ÐÐÐÐÐÐÐ⇀vwhite←black

To change from one reference frame to another,
simply subtract the velocity of the object whose
frame we are entering:

ÐÐ⇀v2←3 =ÐÐ⇀v2←1 −ÐÐ⇀v3←1 (3.1)

To go from the earth’s reference frame to the black
car’s reference frame, we can make “1” the earth,
“2” the white car, and “3” the black car:

ÐÐÐÐÐÐÐ⇀vwhite←black =ÐÐÐÐÐÐÐ⇀vwhite←earth −ÐÐÐÐÐÐÐ⇀vblack←earth

= (+25m/s) − (+25m/s) = 0
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Staying in the black car’s reference frame and look-
ing at the truck, it appears to be moving very fast.
From the bridge, the truck appeared to be moving
25 m/s, but since we are moving in the opposite di-
rection of the truck, it appears to be moving much
faster.

Interestingly, the earth itself and everything hooked
to it appears to be moving in the reference frame
of the black car. If you are sitting in the black car,
you see houses, trees, and the cement barrier going
past your window, even though they are motionless
in the earth’s reference frame.

Often, it will be easiest to think about situations
in the earth’s reference frame, but all of the laws
of physics are still true in any reference frame that
is not accelerating. This type of reference frame is
often called an “inertial reference frame.”

If you are riding in a train car and sipping from a
cup of coffee, you understand the physics of taking
a small careful sip, and you are able to do this
as naturally on a train as you would if you were
standing on solid ground. The laws of physics work
just the same in the moving train as outside on
solid ground. That is, unless the train is suddenly
lurching out of the station, or applying the brakes,
or going around a sharp curve. At those times, the
inside of the train is a non-inertial reference frame,
so the normal laws of physics do not apply inside
the train car, and you spill your coffee.

Figure 3.4: The black car’s reference frame[9]

Figure 3.5: The truck’s reference frame[9]

Similarly,

ÐÐÐÐÐÐÐ⇀vtruck←black =ÐÐÐÐÐÐÐ⇀vtruck←earth −ÐÐÐÐÐÐÐ⇀vblack←earth

= −25m/s − (+25m/s) = −50m/s

What happens if we look at the earth from the
black car’s reference frame? Using Equation 3.1
where “3” is again the black car but this time the
earth is both “1” and “2,”

ÐÐÐÐÐÐÐ⇀vearth←black =ÐÐÐÐÐÐÐ⇀vearth←earth −ÐÐÐÐÐÐÐ⇀vblack←earth

…and recognizing that the velocity of the earth in
the earth’s reference frame is zero…

ÐÐÐÐÐÐÐ⇀vearth←black = 0 − (+25m/s) = −25m/s

The earth and everything solidly connected to it has
a velocity of -25 m/s in the black car’s reference
frame!

Notice that ÐÐÐÐÐÐÐ⇀vearth←black is the opposite of
ÐÐÐÐÐÐÐ⇀vblack←earth. This will be true for any pair of ob-
jects:

ÐÐ⇀v1←2 = −ÐÐ⇀v2←1 (3.2)
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3.2 An Ant Pushing a Rock

Words

Figure 3.6 shows an ant pushing a rock. Let’s imag-
ine that at first neither the ant nor the rock is mov-
ing, but then the ant begins pushing and the rock
and the ant both start moving to the right, accel-
erating together at a constant 0.5 m/s2. The rock
looks much larger than the ant, so we will say that
the ant has a mass of 0.005 kg and the rock has a
mass of 0.015 kg.

The ant is applying a force to the rock to make
it accelerate. What are the other forces involved,
and how do they compare with the force that the
ant is applying to the rock? For simplicity, we will
assume that the rock slides freely on the ground,
and we will consider only the horizontal direction.

If a drawing is not given, it is good to make a sketch
to help with understanding the situation clearly.

The possible forces in the horizontal direction are
at each interface. So between the ant and the rock,
between the ant and the ground, and between the
rock and the ground.

At each interface there are two forces involved–
for example, the ant pushes on the rock, and the
rock pushes back on the ant. To some people, it
may seem obvious that since the ant is the thing
doing the pushing, it is applying the larger force.
To others, it may seem obvious that since the rock
is larger than the ant, it is applying the larger force.
But in fact neither of these is correct!

Graphics

Figure 3.6: An ant pushing a rock.[10]

Figure 3.7: A sketch of the ant, the rock, and the
forces affecting them. [1]

Numbers

Assumptions: +x̂ is to the right; no friction be-
tween the rock and the ground; horizontal direction
only

Knowns Unknowns
mant = 0.005 kg ÐÐÐÐÐÐ⇀

Fant→rock

mrock = 0.015 kg ÐÐÐÐÐÐÐ⇀
Fground→ant

Ð⇀a = +0.5m/s2 x̂
ÐÐÐÐÐÐ⇀
Frock→ant

ÐÐÐÐÐÐÐÐ⇀
Fground→rock = 0

Here, ÐÐÐÐÐÐ⇀Fant→rock is the force applied by the ant on
the rock, and similarly for the other subscripts.

Note that only one acceleration Ð⇀a is listed as an
unknown, instead of listing ÐÐ⇀aant and ÐÐ⇀arock sepa-
rately. Since the ant and the rock are in contact
with each other the whole time, their motion will
be identical, so they have the same acceleration.
No subscript is needed.

Since we have the acceleration and masses of the
objects and are looking for force, we can use New-
ton’s Second Law:

ÐÐ⇀
Fnet =m ⋅Ð⇀a
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First, let’s consider the rock because only one force
is acting on it in the horizontal direction: the force
from the ant. That force is just enough to acceler-
ate the rock at 0.5 m/s2: 0.0075 N.

The ant has two forces acting on it, and we don’t
yet know either one, so it is easier instead to con-
sider the ant and the rock to be a single system,
and look at the forces affecting that system. Fig-
ure 3.7 shows that the only external horizontal force
affecting the system is the frictional force of the
ground pushing the ant. That force is just enough
to accelerate the system at 0.5 m/s2: 0.01 N.

Now we can consider just the ant. The net force
from the ground and the rock has to be just enough
to accelerate the ant at 0.5 m/s2. We already know
the size of the force from the ground on the ant,
so now we can find the force from the rock on the
ant. Interestingly, it is exactly the same magnitude
as the force of the ant on the rock, but in the
opposite direction!

This is a general rule that will be true for all forces.
Forces are interactions between two objects, and
the force on one object is the same magnitude and
opposite direction as the force on the second ob-
ject. This is called Newton’s Third Law.

When determining how forces affect an object, for
example when finding an object’s acceleration, its
change in momentum, or its change in energy, only
the external forces, those acting on the object from
outside, should be considered.

Fant→rock rock

Figure 3.8: FBD of rock, horizontal direction
only[1]

Fground→ant

ant & rock

Figure 3.9: FBD of ant & rock system, horizontal
direction only[1]

Frock→ant

Fground→ant

ant

Figure 3.10: FBD of ant, horizontal direction
only[1]

ant rock
Frock→antFant→rock

Fground→ant Fant→ground

Figure 3.11: Combined FBD[1]

It is possible to combine the FBD’s of the ant and
the rock. For each object, only the external forces,
the arrows touching the object from the outside,
affect the object’s motion and momentum.

We have the mass and the acceleration of the rock,
so we can find the net force on it. The only force
on the rock is from the ant, so the net force is just
ÐÐÐÐÐÐ⇀
Fant→rock.

ÐÐÐÐÐÐ⇀
Fant→rock =mrock ⋅Ð⇀a = +0.0075 N x̂

We have the mass and the acceleration of the com-
bined ant & rock system, so we can find the net
force on it as well, and the only external force on
the system is from the ground on the ant.

ÐÐÐÐÐÐÐ⇀
Fground→ant = (mant +mrock) ⋅Ð⇀a = +0.01 N x̂

We have the mass and the acceleration of the ant,
so we can find the net force on it as well, and since
we already know the force from the ground on the
ant we can find the force of the rock on the ant.

ÐÐ⇀
Fnet =

ÐÐÐÐÐÐÐ⇀
Fground→ant +

ÐÐÐÐÐÐ⇀
Frock→ant

Rearranging gives…

ÐÐÐÐÐÐ⇀
Frock→ant =

ÐÐ⇀
Fnet −

ÐÐÐÐÐÐÐ⇀
Fground→ant

= (0.005 kg ⋅ 0.5m/s2 − 0.01 N) x̂
= −0.0075 N x̂

We can see that the force of the ant on the rock is
equal and opposite to the force of the rock on the
ant. This will be true for any physical situation.

ÐÐ⇀
F1→2 = −

ÐÐ⇀
F2→1 (3.3)
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3.3 Kicking Horizontally

Words

Figure 3.12 shows a soccer player about to kick a
ball. The 450-gram ball was initially moving to the
left at 5 m/s and after the kick it moves to the
right at 15 m/s.

What can be said about what happened during the
kick from just this information?

There is not really much information to work with
here. The mass of the ball shouldn’t change be-
cause of the kick. The only change described is
the velocity of the ball.

Velocity was to the left, and after the kick velocity
is to the right at a higher speed. So there has been
a change in momentum, not only in magnitude but
also in direction.

Imagine the kick in slow motion. The ball is moving
left, then it comes into contact with a foot. The
foot stops the motion to the left, removing all of
the ball’s initial momentum, and then gives the ball
momentum to the right.

This happens quickly, so in a short time the foot
created a large change in the ball’s momentum. A
change in momentum is often called an impulse,
especially when the interaction occurs over a very
small amount of time.

Graphics

Figure 3.12: A soccer player kicking a ball.[11]
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Figure 3.13: Momentum is constant before the
kick, changes rapidly during the kick, and then is
constant again after the kick.[1]

Since momentum is always conserved in an isolated
system, something outside of the ball affected it.

Numbers

Assumptions: +x̂ is to the right; horizontal direc-
tion only

Knowns Unknowns
m = 0.45 kg ???
v0x = −5m/s
vf,x = +15m/s

In this situation we are asked to find anything that
we can, so there are no specific unknowns to look
for.

Given mass and velocity, perhaps momentum would
be a good place to start.

Since we have initial and final information about
the ball, we can calculate its change in momentum,
knowing that Ð⇀p =m ⋅Ð⇀v .

Ð⇀
∆p =Ð⇀pf −Ð⇀pi
=m ⋅Ð⇀vf −m ⋅Ð⇀vi

=m ⋅
Ð⇀
∆v

= 0.45 kg ⋅ (+15m/s − (−5m/s)) x̂
= 9 kg ⋅m/s x̂

Ð⇀
∆p is often called impulse.
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Changing the momentum of the ball would have
taken a force, so the foot applied a force to the
ball, to the right. And since forces come in equal-
and-opposite pairs, the ball must also have applied
that same amount of force to the foot, but in the
opposite direction.

This all happened very quickly, so the forces in-
volved had to be very large but acting over a very
small amount of time.

We also know something about the kinetic energy
of the ball: After the kick it was moving more
quickly than it was before the kick. So its ki-
netic energy increased. That means work must
have been done on the ball.

The foot must have done work on the ball, and if
the foot continued moving to the right the entire
time, it was doing work for the entire time that it
was in contact with the ball.

At the instant the ball came into contact with the
foot, it was moving to the left, so it should be
doing work on the foot, except that the foot was
moving in the opposite direction. What actually
happens during the collision is some of the energy
gets stored as elastic, or spring, potential energy
and some of the energy is transformed into ther-
mal energy, or heat, warming up the ball. The
ball’s kinetic energy and some work from the foot
is first transformed into thermal energy and elastic
potential energy, and then more work from the foot
and the elastic potential energy is transformed into
more thermal energy and the final kinetic energy of
the ball.

Ffoot→ball Fball→foot

foot ball

Figure 3.14: Combined FBD of the foot and ball
during the kick, focusing on forces on the ball[1]

Ffoot→ball Fball→foot

ballfoot

Figure 3.15: Combined FBD of the foot and ball,
focusing on forces on the foot.[1]

Newton’s Second Law tells us that…

ÐÐ⇀
Fnet =

Ð⇀
∆p

∆t

…but we don’t know ∆t. We do, however, know
that ∆t is very small, probably a few milliseconds,
so the forces involved must be very large. Using
Equation 3.3,

ÐÐÐÐÐÐ⇀
Ffoot→ball = −

ÐÐÐÐÐÐ⇀
Fball→foot

…so there is also a very large force applied from the
ball to the foot.

We don’t know the amount of time that the force
is applied, but we do know that the time that the
ball was in contact with the foot is exactly equal
to the time that the foot was in contact with the
ball. We also know that the force on the foot from
the ball was exactly equal to the force on the ball
from the foot. Since we know that the times are
the same and the forces are equal and opposite…

ÐÐÐÐÐÐ⇀
Ffoot→ball ⋅∆t = −

ÐÐÐÐÐÐ⇀
Fball→foot ⋅∆t

…or…
ÐÐÐ⇀
∆pball = −

ÐÐÐÐ⇀
∆pfoot

ÐÐÐ⇀pball,f −ÐÐÐ⇀pball,i = − (ÐÐÐ⇀pfoot,f −ÐÐÐ⇀pfoot,i)

…which can be rearranged to show that…

ÐÐ⇀ptot,i =ÐÐÐ⇀ptot,f (3.4)

This is true for any isolated system of objects, that
is, a system that has no interactions with anything
outside of the system.
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3.4 Elastic Collision

Words

One hard steel ball with a mass of 0.7 kg is sitting
motionless when it is hit by an identical steel ball
that is moving to the right at 3 m/s. A collision
between steel balls is normally an elastic collision,
which means that almost no kinetic energy is trans-
formed to thermal energy in the collision. Assume
that there are no external forces affecting the balls
and the collision is perfectly elastic so no thermal
energy is created.

What is the final velocity of each ball?

In any collision, the first thing to consider is mo-
mentum, since momentum is always conserved for
any isolated system. And the forces between the
objects during a collision are usually so large that all
other forces can be neglected during the collision.
So for practical purposes, momentum is conserved
for any collision, whether there are external forces
or not.

We are also assuming that the collision is perfectly
elastic, so no kinetic energy is converted to ther-
mal energy in this collision. During the collision the
balls deform very slightly, storing elastic potential
energy, and this elastic potential energy transforms
into kinetic energy after the collision, making the
final kinetic energy equal to the initial kinetic en-
ergy.

Graphics

Figure 3.16: A moving ball about to hit a
stationary ball[1]

Figure 3.17: Sketch of balls before the collision[1]

Figure 3.18: Sketch of balls after the collision[1]

Numbers

Assumptions: +x̂ is to the right; no external forces;
perfectly elastic collision

Knowns Unknowns
m1 =m2 = 0.7 kg ÐÐ⇀v1,f
Ð⇀v1,i = +3m/s x̂ ÐÐ⇀v2,f
Ð⇀v2,i = 0
Ek,i = Ek,f

Equation 3.4 tells us that:

Ð⇀p1,i +Ð⇀p2,i =ÐÐ⇀p1,f +ÐÐ⇀p2,f
m1 ⋅Ð⇀v1,i +m2 ⋅Ð⇀v2,i =m1 ⋅ÐÐ⇀v1,f +m2 ⋅ÐÐ⇀v2,f

…but we don’t knowÐÐ⇀v1,f orÐÐ⇀v2,f . We need a second
equation.

Given that the collision is perfectly elastic…

Ek,i = Ek,f

…or…

1

2
m1 ⋅ v21,i +

1

2
m2 ⋅ v22,i =

1

2
m1 ⋅ v21,f +

1

2
m2 ⋅ v22,f
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In this case, the ball on the right starts with no mo-
mentum, and the ball on the left has momentum.
So the total momentum of the system is to the
right. Whatever happens during the collision, the
total momentum will still have to be to the right
after the collision. That could mean both balls will
end up going to the right, one ball stops and the
other goes to the right, or one ball goes to the left
and the other ball goes faster to the right.

Since there are so many options, in order to deter-
mine what actually happens in a collision like this,
you have to crank through the numbers.

After going through the numbers, we find that
there are three possibilities:

Possibility #1: Ball 1 stops completely and Ball 2
has a final velocity that is the same as the initial
velocity of Ball 1.

Possibility #2: The velocities of both balls are the
same as their initial velocities. This describes the
situation if the first ball would have missed the sec-
ond ball completely, so it is not the solution to what
happens after a collision.

Possibility #3: Ball 1 stops completely and Ball
2 stays still. This cannot be correct, because this
solution does not conserve momentum.

So the first possibility has to be the solution: Ball
1’s final velocity is zero and Ball 2’s final velocity
is 3 m/s to the right.

Possibility #1:
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Figure 3.19: If the velocity of Ball 1 goes to zero,
its momentum goes to zero. In order to conserve
momentum for the system, the momentum of Ball
2 has to increase by the same amount that the
momentum of Ball 1 decreased.[1]

Possibility #2:
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Figure 3.20: If the velocity of Ball 2 does not
change, its momentum does not change. So the
momentum of Ball 1 cannot change.[1]

We have two equations (one each for momentum
and energy) and two unknowns, so we can solve
for both velocities. We can simplify the equations,
since m1 =m2 and ÐÐÐÐ⇀v2,i = 0, giving…

Ð⇀v1,i =ÐÐ⇀v1,f +ÐÐ⇀v2,f (frommomentum)

and

v21,i = v21,f + v22,f (from energy)

Since there is only motion in the x direction, we
can just consider the x̂ part of the vectors:

v1,i,x = v1,f,x + v2,f,x

v21,i,x = v21,f,x + v22,f,x
Squaring both sides of the first equation…

v21,i,x = v21,f,x + 2 ⋅ v1,f,x ⋅ v2,f,x + v22,f,x

Now we have two equations for v21,i,x. Setting them
equal to each other…

v21,f,x + v22,f,x = v21,f,x + 2 ⋅ v1,f,x ⋅ v2,f,x + v22,f,x

…which can only be true if…

2 ⋅ v1,f,x ⋅ v2,f,x = 0

There are three possibilities:

Possibility #1 v1,f,x = 0 v2,f,x ≠ 0
Possibility #2 v1,f,x ≠ 0 v2,f,x = 0
Possibility #3 v1,f,x = 0 v2,f,x = 0

Which ones make physical sense?
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3.5 Two Moving Balls

Words

Two identical steel balls have an elastic collision
with each other. Both have a mass of 0.7 kg. One
is initially moving to the right at 1.5 m/s and the
other is initially moving to the left at 1.5 m/s.

What is the final velocity of each ball?

In any collision, the first thing to consider is mo-
mentum. The total momentum will be conserved.
In this case Ball 1 has momentum to the right and
Ball 2 has the exact same amount of momentum
but to the left. So the total momentum of the sys-
tem is zero. That means that after the collision,
the balls will also have equal and opposite momen-
tum. And since they both have the same mass,
they will also have equal and opposite velocity, so
the same speed but opposite directions.

Since this is an elastic collision, we know that no
thermal energy is created. That means initial and
final kinetic energy must be equal in this situation.
Initially, the speeds and the masses of the two balls
are the same. Since the final speeds of the two balls
are equal, the only way for the final kinetic energy
to be the same as the initial kinetic energy is if the
final speeds are the same as the initial speeds. Ball
1 ends up moving to the left at 1.5 m/s and Ball 2
ends up moving to the right at 1.5 m/s.

Graphics

Figure 3.21: Two steel spheres that are about to
collide.[1]

Figure 3.22: Sketch of balls before the collision[1]

Figure 3.23: Sketch of balls after the collision[1]

Numbers

Assumptions: +x̂ is to the right; no external forces

Knowns Unknowns
m1 =m2 = 0.7 kg ÐÐ⇀v1,f
Ð⇀v1,i = +1.5m/s x̂ ÐÐ⇀v2,f
Ð⇀v2,i = −1.5m/s x̂
Ek,i = Ek,f

As in Section 3.4, conservation of momentum tells
us that…

Ð⇀p1,i +Ð⇀p2,i =ÐÐ⇀p1,f +ÐÐ⇀p2,f
and conservation of energy tells us that…

1

2
m1 ⋅ v21,i +

1

2
m2 ⋅ v22,i =

1

2
m1 ⋅ v21,f +

1

2
m2 ⋅ v22,f

But in this case Ð⇀p1,i +Ð⇀p2,i = 0, so…

ÐÐ⇀p2,f = −ÐÐ⇀p1,f

Since the masses are equal, ÐÐ⇀v2,f = −ÐÐ⇀v1,f . Since the
speeds v1,i = v2,i and v1,f = v2,f , the energy equa-
tion simplifies to:

v1,i = v2,i = v1,f = v2,f

So we are left only with determining the final direc-
tions of motion. This can be done by considering
conservation of momentum.
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Let’s try looking at this question from a different
reference frame, one that is moving 1.5 m/s to the
left. In that reference frame, Ball 2 is not moving,
and Ball 1 is moving at 3 m/s to the right. After
the collision, Ball 1 is not moving in this reference
frame, but Ball 2 is now moving to the right at
3 m/s.

This is exactly the same as the physical scenario in
Section 3.4! So these two sections have presented
exactly the same physical scenario, as seen from
two different reference frames. Sometimes a clever
choice of reference frame can simplify the analysis
of a collision.

The graphs in Figures 3.24, 3.25, & 3.26 show the
motion of the two balls over a very brief period of
time just before, during, and just after the colli-
sion. Since the only force is when the two balls are
colliding with each other, there is no acceleration
except for sharp spikes during the collision itself.
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Figure 3.24: Positions in elastic collision[1]
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Figure 3.25: Velocities in elastic collision[1]
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Figure 3.26: Accelerations in elastic collision [1]
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3.6 Railway Couplers

Words

When railway cars are assembled into a train, they
are connected using railway couplers. This is an
example of an inelastic collision, because the two
train cars stick together after the collision that cou-
ples them.

Consider a 90,000 kg boxcar sitting motionless on a
track in a railyard. A 500,000 kg engine backs into
it at 0.2 m/s. The collision between the cars takes
0.08 seconds, after which they are locked together.
We should be able to describe their velocity after
the collision, the change in kinetic energy during
the collision, the amount of force they applied to
each other during the collision, and the acceleration
of the engine and the boxcar during the collision.

In any collision, you can’t go wrong by starting to
think about it in terms of momentum. Initially the
boxcar was not moving, so it had no momentum.
The engine did have momentum. After the col-
lision, the two train cars were stuck together, so
they have the same velocity. Since momentum is
conserved, there must be momentum after the col-
lision. So after the collision both of the train cars
have momentum in the same direction as the ini-
tial momentum. The engine transfers just enough
of its momentum to the boxcar to bring them both
to the same final velocity.

Graphics

Figure 3.27: Two train cars connected by railway
couplers.[13]

Figure 3.28: Sketch of the train cars before
coupling.[1]

Numbers

Knowns Unknowns
mboxcar = 90,000 kg

ÐÐÐÐÐÐÐÐÐ⇀
Fboxcar→engine

mengine = 500,000 kg
ÐÐÐÐÐÐÐÐÐ⇀
Fengine→boxcar

ÐÐÐÐ⇀vi,boxcar = 0 Ð⇀vf
ÐÐÐÐ⇀vi,engine = 0.2m/s x̂ ∆Ek

tcollision = 0.08 s ÐÐÐÐ⇀aboxcar
ÐÐÐÐ⇀aengine

Since a direction is not given, it is easiest to set
the problem up so that the initial velocity is in the
positive direction. There is only one Ð⇀vf because
the train cars are stuck together after the collision.

We can start by finding the initial momentum of
the system:

ÐÐ⇀pi,tot =ÐÐÐÐÐ⇀pi,engine +�����:0ÐÐÐÐ⇀pi,boxcar

=mengine ⋅ÐÐÐÐ⇀vi,engine

= (500,000 kg) ⋅ (0.2m/s x̂)
= 100,000 kg ⋅m/s x̂

Since momentum is conserved in a collision, we
can set the final momentum equal to the initial
momentum, and use that to find the final velocity
of the stuck-together engine-boxcar system:

ÐÐ⇀pi,tot =ÐÐ⇀pf,tot

100,000 kg ⋅m/s x̂ =mtot ⋅Ð⇀vf
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No work is done on the engine-boxcar system by
anything outside of that system, so the total energy
of the system doesn’t change.

We know that this is an inelastic collision, since
the two railway cars stick together following the
collision. That tells us that some of the kinetic
energy was transformed into thermal energy during
the collision as the couplings rubbed together and
latched into place. Any inelastic collision results in
the conversion of some kinetic energy into thermal
energy.

Because of conservation of momentum, the less
massive boxcar has a larger change in velocity than
the more massive engine. And since this change
in velocity occurs in the same amount of time,
we also know that the acceleration of the boxcar
is larger than the acceleration of the engine during
the collision.

The force that the boxcar exerts on the engine
would have the same magnitude as the force that
the engine exerts on the boxcar, but these two
forces would be in opposite directions.
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Figure 3.29: Energy bar graph for the collision.
Initial thermal energy is taken to be zero.
Gravitational energy is zero because both train
cars are on the ground before and after the
collision.[1]

Note that the total heights of the columns on the
left is equal to the total heights of the columns on
the right.

-0.08 -0.04 0 0.04 0.08 0.12 0.16

≤0

0.04

0.08 0.12 0.16

Figure 3.30: Motion map of the engine (top) and
the boxcar (bottom). The labels are in seconds,
and the collision is from 0 to 0.08 s.[1]

Note that the change in the length of the arrows is
much larger for the boxcar than for the engine.

Ð⇀vf =
100,000 kg ⋅m/s x̂

590,000 kg

= 0.169m/s x̂

Now we can find the change in kinetic energy.

∆Ek = Ek,f,tot −Ek,i,tot

= 1

2
mtot ⋅ v2f −

1

2
mengine ⋅ v2i,engine

= (8,425 J) − (10,000 J)
= −1575 J

Conservation of energy tells us that this energy
doesn’t just disappear. It has to go somewhere. In
an inelastic collision, it changes to thermal energy.

∆Eth = −∆Ek = 1575 J

If we assume that the force is constant during the
collision, then the acceleration would be…

Ð⇀a =
Ð⇀
∆v

∆t

This gives a larger acceleration for the boxcar than
for for the engine: ÐÐÐÐ⇀aboxcar = +2.11 m/s2 x̂ and
ÐÐÐÐ⇀aengine = −0.388m/s2 x̂
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3.7 Curling

Words

The conversion of kinetic energy to thermal energy
is not limited to collisions. It happens any time
that two surfaces rub together. Take, for example,
the Olympic sport of curling. One person pushes a
heavy “stone” on a sheet of ice and then releases it,
and the rest of the curling team sweeps the area in
front of the stone as it slides, trying to control the
friction to get the stone to stop in a target area.

When it leaves the curler’s hand, the stone has mo-
mentum and kinetic energy, but the force of friction
opposes the momentum, doing negative work on
the stone and slowing it until it eventually comes
to rest. After the stone has stopped moving, all
of the kinetic energy is gone, changed into thermal
energy.

Let’s consider an 18 kg curling stone that was
initially released with a momentum of 60 kg ⋅m/s,
and stops after traveling 45 m across the ice. We
should be able to describe the velocity of the stone
for the whole time it is sliding, the force of fric-
tion on the stone, the energy conversions that take
place as it slides across the ice, and the amount of
time that the stone is in motion after it has been
released.

Graphics

Figure 3.31: Top: A curler preparing to push a
stone. Bottom: Stones in the target area.[14]

Figure 3.32: A sketch of the curling stone before
and after sliding across the ice.[1]

Numbers

Many of our mathematical models are only valid
if the force is constant. Sometimes, like for this
situation, the assumption is valid; other times, like
in a collision, it is not. Even when the force is not
constant, versions of these mathematical models
are useful for finding average values. For example:

ÐÐÐÐ⇀
Fnet,avg =

Ð⇀
∆p

∆t
(3.5)

and

ÐÐ⇀aavg =
Ð⇀
∆v

∆t
(3.6)

…where ÐÐÐÐ⇀Fnet,avg and ÐÐ⇀aavg are the average values
over time. One of our other mathematical models
is true for the average force over a distance:

Wnet = Fnet,avg ⋅∆x ⋅ cos(θ) (3.7)

Assumptions: +x̂ is to the right

Knowns Unknowns
m = 18 kg Ð⇀v
Ð⇀pi = 60 kg ⋅m/s x̂

Ð⇀
Ff

Ð⇀pf = 0 Energy transformations
Ð⇀
∆x = 45m x̂ ∆t
Ð⇀vf = 0
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Since specific directions aren’t given, we can choose
a direction that is easy to draw or easy to think
about. Since “to the right” is conventionally taken
to be the positive direction, for simplicity Figure
3.32 is set up so that the initial momentum is to the
right. Given that, we know that the initial velocity
is also to the right, or positive. And since the stone
stops at the end, its final velocity is zero.

The force of friction always opposes the relative
motion of two objects, so the force on the stone is
to the left, or negative.

The amount of time that the stone spends sliding
across the ice depends on the force of friction and
the initial momentum. The larger the force, the less
time it will take to stop; and the larger the initial
momentum, the more time it will take to stop.

Note that the question doesn’t ask about just the
initial or final velocity. It says we should be able
to describe the velocity for the whole time. So
what about the time during which it is sliding? The
velocity will always be to the right, but dropping
continuously while the stone slides across the ice,
as is shown in Figure 3.34. We could speak of
an average velocity of the stone during this time,
which would be to the right, and if the force is
constant, the average velocity would be half of the
initial velocity.
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Figure 3.33: Momentum is decreasing over time,
indicating a negative net force.[1]
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Figure 3.34: Velocity is decreasing over time,
indicating a negative acceleration.[1]

It is relatively easy to find the initial velocity, and
from it the initial kinetic energy:

Ð⇀pi =m ⋅Ð⇀vi

Ð⇀vi =
Ð⇀pi
m
= 60 kg ⋅m/s

18 kg
= 3.33m/s x̂

Ek,i =
1

2
m ⋅ v2i =

1

2
(18 kg)(3.33m/s)2 = 100 J

All of the initial kinetic energy is converted to ther-
mal energy, so ∆Ek = −100 J and ∆Eth = 100 J.
Now we can use the Work-Energy Theorem and
3.7 to find the average force of friction.

∆Ek =Wnet = Ff ⋅∆x ⋅ cos (180○)

Ff =
∆Ek

−∆x
= −100 J
−45m

= 2.22 N

180○ was used as the angle because we assume that
the force is opposite the direction of the displace-
ment. Since we got a positive value for the force,
we know that our assumption was correct. If the
number turned out to be negative then we would
know that our assumption was not correct. The ve-
locity varies continuously over the time the stone
is moving. We have already found the initial and
final velocity. Another useful piece of information
is the average velocity, which is given by…

ÐÐ⇀vavg =
Ð⇀
∆x

∆t
(3.8)

In situations where the net force (and therefore the
acceleration) is constant, average velocity is also
given by…

ÐÐ⇀vavg =
Ð⇀vi +Ð⇀vf

2
(3.9)
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3.8 Car crash, initial impact

Words

Let’s consider the car crash in Figure 3.1. We can
imagine what happened. Perhaps the 2500 kg truck
was stopped, and the 1500 kg car hit it from be-
hind at 25 m/s. The truck would have been shoved
forward by the car, and the two stuck together.
The time in which the car and truck were smash-
ing into each other would have been very short,
let’s say 30 milliseconds. The drivers of both ve-
hicles probably were applying the brakes, and the
vehicles skidded together to a stop after traveling
together for 4 m. For now let’s focus on what hap-
pened during the early part of the crash when they
were smashing into each other, before the vehicles
skidded together.

We should be able to find the average force that
each vehicle applied to the other during the early
part of the crash, the velocity of the car-truck
wreckage just after they had finished smashing into
each other but before they started skidding to-
gether, and the kinetic energy of the vehicles just
before and just after they smashed into each other.

Before the car hit the truck, the truck was not
moving but the car was; a short time after contact
the car and the truck were connected together and
moved as if they were a single object with the com-
bined mass of both vehicles. Because of this, there
is only one velocity after the collision, and it is the
velocity of both the car and the truck.

Graphics

Figure 3.35: Sketches of what could have
happened in the crash. In this section we will
consider only the top two sketches.[1]

Numbers

Assumptions: +x̂ is to the right; external forces
are negligible

Knowns Unknowns
mcar = 1500 kg

ÐÐÐÐÐÐ⇀
Fcar→truck

mtruck = 2500 kg
ÐÐÐÐÐÐ⇀
Ftruck→car

ÐÐ⇀vi,car = −25m/s x̂ Ð⇀vf
ÐÐÐÐ⇀vi,truck = 0 Ek,i

tcollision = 0.03 s Ek,f

The place to start in any collision is with conserva-
tion of momentum, which we can use to find the
final velocity of the car and truck:

ÐÐ⇀pi,tot =ÐÐ⇀pf,tot
ÐÐÐ⇀pi,car =ÐÐ⇀pf,tot

mcar ⋅ÐÐ⇀vi,car =mtot ⋅Ð⇀vf

Ð⇀vf = (
mcar

mtot
)ÐÐ⇀vi,car = −9.375m/s x̂

This is the velocity of the two vehicles after they
have smashed together and before they start sliding
together down the road.
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In the crash, the car transferred some of its momen-
tum to the truck, applying a force to the truck. So
the truck applied an equal-but-opposite force to the
car. Since momentum is conserved in an isolated
system, the change in the truck’s momentum is the
same as the change in the car’s momentum, but in
the opposite direction.

This tells us something about the acceleration.
They have the same change in momentum, but
different masses. The more massive truck has a
smaller change in velocity than the car, so the ac-
celeration of the truck is less than the acceleration
of the car.

Initially the car had kinetic energy, but the truck
did not; after the collision they both have some
kinetic energy. But in the collision the two ve-
hicles stuck together, a completely inelastic colli-
sion, which means that some of the kinetic energy
was transformed into thermal energy as the car and
truck were deforming.

Fcar→trucktruck

Figure 3.36: Free body diagram (FBD) of the
truck during the collision, horizontal direction
only. The force of friction is small compared to
the force caused by the collision, so it is being
neglected.[1]
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Figure 3.37: Energy bar graph for the collision.
Initial thermal energy is taken to be zero.
Gravitational energy is zero because both vehicles
are on the ground before and after the collision.[1]

Note that the total heights of the columns on the
left is equal to the total heights of the columns on
the right.

We can use Newton’s Second Law to find the force
on the truck during the collision:

ÐÐÐÐÐÐ⇀
Fcar→truck =

ÐÐÐÐ⇀
∆ptruck

∆t
=
mtruck ⋅ (Ð⇀vf −ÐÐÐÐ⇀vi,truck)

tcollision

= 2500 kg ⋅ (−9.375 − 0)m/s x̂
0.03 s

= −7.8 × 105 N x̂

From Equation 3.3, we know that
ÐÐÐÐÐÐ⇀
Ftruck→car = −

ÐÐÐÐÐÐ⇀
Fcar→truck = +7.8 × 105 N x̂

We already know all of the velocities and masses,
so we can find the change in kinetic energy.

Ek,i =
1

2
mcar ⋅ v2i,car +

1

2
mtruck ⋅ v2i,truck

= 1

2
(1500 kg) ⋅ (−25m/s)2 + 0 = 4.7 × 105 J

Ek,f =
1

2
mtotal ⋅ v2f

= 1

2
(4000 kg) ⋅ (−9.375m/s)2= 1.76 × 105 J

Energy is conserved whenever no work is being done
by an external force. Gravity and springs do not
play a role in this situation, so lost kinetic energy
changes into thermal energy.

Ek,i +Eth,i = Ek,f +Eth,f

Ek,i −Ek,f = Eth,f −Eth,i

∆Eth = (4.7 − 1.76) × 105 J = 2.94 × 105 J
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3.9 Car crash, sliding

Words

Now we consider the same collision as in Section
3.8, but focus on what happened when the vehicles
skidded together across the ground. During that
time, the vehicles were braking and they skidded
to a stop after traveling for 4 m.

We should be able to describe the total braking
force that was required, which is a frictional force
that we will assume to be constant, acting between
the tires and the road; the amount of time that they
were skidding; and the energy transformations.

It is usually best to start any analysis with whatever
part seems easiest. In this case, it is easiest to think
about the energy involved. We know the vehicles
are moving when they start to skid down the road,
so they have kinetic energy. The road is flat, so
we don’t have to worry about any changes in grav-
itational potential energy. And there are not any
springs that are trying to stop them or make them
go faster, so we also don’t need to worry about
spring potential energy. So we started with only
kinetic energy. And after the vehicles stop moving,
they no longer have kinetic energy. So where did
all of the energy go? The only option left is ther-
mal since we have ruled out potential energies. All
of the kinetic energy is transformed into thermal
energy.

Graphics

Figure 3.38: Sketch of the car and truck skidding
together after the initial impact.[1]
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Figure 3.39: Energy bar graph for the vehicles
skidding on the road. Initial thermal energy is
taken to be zero. Gravitational energy is zero
because both vehicles are on the ground before
and after the collision.[1]

Numbers

Assumptions: +x̂ is to the right; frictional force
is constant Note that the initial velocity for the

Knowns Unknowns
mwreckage = 4000 kg

Ð⇀
Ff

Ð⇀vi = −9.375m/s x̂ tskidding
Ð⇀vf = 0 ∆Eth
Ð⇀
∆x = −4m x̂ ∆Ek

skidding part of the collision is the final velocity of
impact part of the collision.

We already know from the last section that Ek,i for
the skidding portion of the collision is 1.76 × 105J.
And sinceÐ⇀vf = 0, Ek,f = 0. Using the Work-Energy
Theorem, we can find the work done by friction on
the vehicles:

W = Etot,f −Etot,i = −1.76 × 105J

Work done by friction is not like work done by
gravity. If gravity does negative work on an ob-
ject, gravitational potential energy is stored. If
friction does negative work on something that is
sliding, it creates thermal energy. So in this case,
∆Eth = 1.76 × 105J
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As the tires skid across the ground, the frictional
force does negative work on the vehicles, slowing
them down. Whenever two surfaces slide against
each other with friction, the friction fights the rela-
tive motion of the two surfaces, converting kinetic
energy into thermal energy.

This only happens when the surfaces move rela-
tive to each other. If a car is sitting on the side
of a hill with the brakes locked, there is still fric-
tion between the tires and the road, but there is
no relative motion, so no work is being done and
kinetic energy is not being transformed by friction
into thermal energy.

We can find the time needed to stop the vehicles by
considering momentum. The car-truck wreckage
has momentum after the initial impact, and then
the force of friction reduces the momentum to zero
over a certain amount of time.

The larger the force of friction, the less time needed
to reduce the momentum to zero.

We could also consider the question of the force
between the car and the truck during the time they
were skidding. It would depend on how much of
the frictional force is coming from the truck’s tires
and how much from the car’s tires. If the car were
not braking at all then there would be a large force
applied on the car from the truck during the time
they were skidding. If they were both braking then
the force between them would be smaller.
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Figure 3.40: A force opposite the direction of
motion does negative work equal to the area
under the curve in a Force-vs-Position graph.[1]
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Figure 3.41: Momentum starts with a large
negative value, and goes to zero over time
because of the force of friction.[1]

We can find the force of friction from the work
done by friction:

Wnet = Fnet ⋅∆x ⋅ cos θ

Fnet =
Wnet

∆x ⋅ cos θ
= −1.76 × 10

5 J

(4m) ⋅ (−1)
= 4.4 × 104 N

The force is positive, so it is in the positive di-
rection, opposite the direction of motion. Since
friction is the only force in the horizontal direction,
Fnet,x = Ff .

We can use Newton’s Second Law to find the time
needed to stop.

ÐÐ⇀
Fnet =

Ð⇀
∆p

∆t
=
Ð⇀pf −Ð⇀pi
tskidding

tskidding =
mwreckage ⋅ vf,x −mwreckage ⋅ vi,x

Ff

= 4000 kg ⋅ 0 − 4000 kg ⋅ (−9.375m/s)
4.4 × 104 N

= 0.85 s
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3.10 Summary

Chapter summaries in this book are ordered by concept, not necessarily in the order in which they are
presented in the chapter. Mathematical models are grouped together at the end of each summary. See the
appendices for the meanings of all symbols used in this book.

General

• Physical situations can be analyzed from different reference frames.

• The laws of physics are true in any inertial (not accelerating) reference frame.

• It is often useful to consider the physics of a system of objects, not just the physics related to a single
object.

• When you make an assumption about the direction of a vector quantity and then you calculate a
positive magnitude, your assumption about direction was correct.

• When you make an assumption about the direction of a vector quantity and then you calculate a
negative magnitude, your assumption about direction was not correct.

Forces

• Forces are interactions between two objects, and the force on one object is the same magnitude and
opposite direction as the force on the second object.

• A free body diagram of an object includes only external forces acting on the object, never forces
caused by the object.

• During a collision, the forces caused by the collision are usually so much larger than any other forces
that all other forces can be neglected.

• During a collision, forces change rapidly, so usually average forces during a collision are calculated.

• The force of friction opposes the relative motion of two objects.

• The force of friction converts kinetic energy into thermal energy when two surfaces slide against each
other.

Motion

• Objects, even stationary objects, change velocity when we change to a different reference frame.

• In a collision between two objects with different masses, the more massive object experiences less
acceleration than the less massive object.

Momentum

• Change in momentum is often called “impulse.”

• Considering momentum is a good way to begin any investigation of a collision.

Energy



• An elastic collision is one in which little kinetic energy is transformed to thermal energy.

• A perfectly elastic collision is one in which no kinetic energy is transformed to thermal energy.

• An inelastic collision is one in which a large amount of kinetic energy is transformed to thermal energy.

• Completely inelastic collisions are collisions in which the two objects stick together after the collision.

• If the force is opposite the direction of motion in a force-vs-displacement graph, the area “under”
the curve represents negative work. In this case either the displacement or the force is shown as a
negative number on the graph.
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Negative and positive work on a force vs displacement graph[1]

Mathematical Models

equation restrictions on the validity of the equation

ÐÐ⇀v2←3 =ÐÐ⇀v2←1 −ÐÐ⇀v3←1 (3.1) -none-

ÐÐ⇀v1←2 = −ÐÐ⇀v2←1 (3.2) -none-

ÐÐ⇀
F1→2 = −

ÐÐ⇀
F2→1 (3.3)

-none-
“Newton’s Third Law”

ÐÐ⇀ptot,i =ÐÐÐ⇀ptot,f (3.4) only valid when there is no external net force

ÐÐÐÐ⇀
Fnet,avg =

Ð⇀
∆p
∆t

(3.5) -none-

ÐÐ⇀aavg =
Ð⇀
∆v
∆t

(3.6) -none-

Wnet = Fnet,avg ⋅∆x ⋅ cos(θ) (3.7) -none-

ÐÐ⇀vavg =
Ð⇀
∆x
∆t

(3.8) -none-

ÐÐ⇀vavg =
Ð⇀vi+
Ð⇀vf

2
(3.9) only valid when the net force is constant



3.11 Questions

Questions are ordered according to Bloom’s Taxonomy, progressing from regurgitating information (Level
1) to synthesizing new information with previous knowledge to create something new (Level 6). The bold
letters at the beginning of each question indicate whether the question involves Words [W], Graphics [G],
and/or Numbers [N]. See the appendices for conversion factors.

Level 1 - Remember

3.1 [W] What does“impulse” mean in physics?

3.2 [W] What type of energy conversion always happens during an inelastic collision?

3.3 [W] Differentiate between what is meant by elastic, inelastic, and completely inelastic collisions.

3.4 [W & N] Add labels to each equation in the “Mathematical Models” section of the summary that
tell what the symbol to the left of the = sign represents.

Level 2 - Understand

3.5 [W] Which of the following describe inertial reference frames where the normal laws of physics are
valid?

(a) A typical physics classroom

(b) A physics classroom during a violent earthquake

(c) The back of a truck that is traveling at constant speed on a long, straight road

(d) The back of a truck that is traveling at constant speed on a long, straight, uphill road

(e) The back of a truck that is accelerating away from a stoplight

(f) A spaceship floating far off in space, away from any sources of gravity

(g) A spaceship firing its rockets far off in space, away from any sources of gravity

3.6 [N] Confirm that Equation 3.8 and Equation 3.9 give the same result for the physical scenario described
in Section 3.7. Show your work.

3.7 [W & N] In Section 3.8 we found the horizontal force on the car and the truck during the impact.

(a) Is the magnitude of the force the same for both the car and the truck? Explain why or why not.

(b) Find the accelerations of the car and the truck during the impact.

(c) Is the magnitude of the acceleration the same for both the car and the truck? Explain why or
why not.

3.8 [W] Explain why the initial velocity for the physical scenario that is considered in Section 3.9 is the
same as the final velocity for the physical scenario that is considered in Section 3.8.

3.9 [W & N] Find the acceleration of the car and the truck from Section 3.9 during the skidding. Is the
acceleration of the car the same as the acceleration of the truck? Why or why not?



Level 3 - Apply

3.10 [N] There are six “Unknowns” listed at the beginning of Section 3.1, but numerical values are only
found for two of them. Find the rest of the numerical values.

3.11 [G] Section 3.1 includes illustrations in the reference frames of the earth, the black car, and the truck.
Draw a similar illustration in the white car’s reference frame.

3.12 [W & G] Draw an energy bar graph for the soccer ball in Section 3.3 for the time just before and
just after the kick. Is energy conserved in this situation? If not, where did the extra energy come
from, or where did it go?

3.13 [N] In Section 3.6 two forces were listed in the unknowns, but they were never found. What are those
forces, including magnitude and direction?

3.14 [N] In Section 3.7 one of the unknowns was time, but it was never explicitly found, though it can be
seen in some of the graphs. Exactly how much time does the stone spend sliding across the ice?

3.15 [G] Section 3.8 includes a free body diagram for the truck during the collision, but ignoring the force
of friction.

(a) Re-draw that free body diagram for the forces on the truck in the horizontal direction only,
including the force of friction. Assume that the driver of the truck was applying the brakes
during the time of the impact.

(b) Does including the force of friction result in a larger or smaller magnitude of the net force on
the truck in the horizontal direction?

(c) Draw another free body diagram for the forces on the car in the horizontal direction only,
including the force of friction. Assume that the driver of the car was applying the brakes during
the time of the impact.

(d) Does including the force of friction result in a larger or smaller magnitude of the net force on
the car in the horizontal direction?

Level 4 - Analyze

3.16 [W & N] In Section 3.7 it is mentioned that some of the team members use brooms to change the
force of friction as the stone slides across the ice. If they were able to reduce the force of friction
by 10%, what effect would that have on the displacement and the time? Would they increase or
decrease? Would they also change by 10%, or more, or less? Explain your answers.

Level 5 - Evaluate

3.17 [W] In the situation given in Section 3.2 it is stated that the ant and rock start motionless. Now
imagine what would happen if the forces applied stayed the same but the ant and rock started with
an initial velocity in one direction or the other.

(a) Would the initial velocity affect the acceleration? Explain why or why not.
(b) Would the initial velocity affect the force applied by the ant to the rock or the rock to the ant?

Explain why or why not.

3.18 [W] Two people are moving toward each other across an open field. One is running and the other
is walking. Rank the following in terms of the amount of time needed for the two people to come
together:

(a) Considering this situation in the earth’s reference frame



(b) Considering this situation in the reference frame of the person who is running
(c) Considering this situation in the reference frame of the person who is walking

Ignore the effects of “special relativity,” if you know what that is!

3.19 [N] An assertion is made in this chapter that during a collision the forces caused by the impact are
usually so much larger than any other forces that all other forces can be neglected. Compare the force
of the impact in Section 3.8 to the force of friction in Section 3.9 for the same collision. How many
times larger is the force of impact than the force of friction with the road? Probably both cars were
braking even during the impact. Does ignoring the force of friction cause a significant (which we will
define for this question as larger than 10%) error in the calculation of the force in the impact?

3.20 [W, G, & N] At the end of Section 3.9 it is noted that the force between the car and the truck
during the time that they are skidding depends on the relative amount of frictional force applied by
the tires of each vehicle.

(a) Find the amount of force applied by the truck on the car while they are skidding if the car is not
braking at all and all 4.4 × 104 N of frictional force comes from the truck’s tires.

(b) Find the amount of frictional force that would need to be applied by the car’s tires and by the
truck’s tires so that their total frictional force would still be 4.4 × 104 N and there would be no
net force applied by the truck on the car while they are skidding.

Level 6 - Create

3.21 [W, G, & N] At the beginning of Chapter 1 in Figure 1.1 was a template for a concept map. Add
the main ideas from this chapter to the concept map that you began for the question at the end of
Chapter 1.

3.22 [W, G, & N] Imagine you are writing a test question related to this chapter. Think of your own
example of a situation that you can analyze using the concepts, graphics, and mathematical analyses
described in this chapter. Describe the situation, and use the tools from this chapter to analyze the
situation as completely as you can, including motion, forces, energy, and momentum.

3.23 [W, G, & N] Think about possible misconceptions about the material in this chapter. Write a
question and an incorrect solution to it that demonstrates a student making such a conceptual error.
This cannot be a simple misuse of a vocabulary word, a unit error, or a mathematical error like
making an addition error or multiplying when addition was needed, unless the error is rooted in a real
misunderstanding about the physics behind the calculation or the misuse of a word. After you have
written the question and incorrect solution, explain what is wrong with the student’s solution, and
write a correct solution to the problem. Note: You may use a question from this chapter that you
got wrong the first time, and explain the initial error in your thinking and how you corrected it.



Chapter 4

Working in Two Dimensions

Figure 4.1: A compass rose, showing the traditional
direction of North as ”up.” [15]

So far, we have only considered objects and forces
in one dimension, either horizontally or vertically.
But our universe is not one-dimensional. Usually
we think of it as being three-dimensional, and that
is correct. We live in three spatial dimensions. It’s
also possible to consider time as another ”dimen-
sion,” in which case we can think of living in a
four-dimensional ”space-time.” And in some the-
oretical models of physics called ”string theories”
there have been attempts made to describe the
universe as being 10-, 11-, or even 26-dimensional!
For now, let’s just work on expanding our under-
standing from one dimension to two.

At first we will consider a flat plane that is ly-
ing flat on the ground, so North and South, East
and West; or left and right, forward and back-
ward. Then we will consider vertical planes, so up
and down, left and right. Finally, we will consider
planes that are tilted. In all cases, it is important
to remember that for our analyses, the two di-
mensions have to be at right angles to each other.
That allows us to consider each dimension sepa-
rately from the other.

For example, if your aunt’s home is West of yours, you have to get there by traveling Westaand not North
or South. In fact, if you do go North, you will then have to undo that motion by going South. North and
South have to be considered as completely separate from East and West.

aYou could also get there by going really far East, since the earth is spherical–but we will imagine everything as being flat
for now. Curved space gets complicated.



4.1 Floating on the Water

Words

Imagine sitting on an inner tube, just floating in
the water with a group of friends. If the river isn’t
moving and all of you are just lazily floating in the
water, you would say that none of you is moving.
And if a person were standing on a nearby shore,
that person would also say that you aren’t moving.

These ideas should sound very familiar, because it is
very similar to our discussion of reference frames in
an earlier chapter. The only difference now is that
some of the objects we are considering (the inner
tubes, you, and your friends) are actually riding on
one of the objects (the water). But all of the ideas
are the same.

But what if the water were moving, and carrying
you and your friends along? If a river is flowing
North at 2 m/s, and you and your friends are just
floating along with the river, you will also go North
at 2 m/s. The person standing on the shore would
be able to watch you going North along with the
river.

Graphics

Figure 4.2: A group of people floating in inner
tubes on a river. If they don’t try to push
themselves through the water by paddling, they
will all move together, along with the river.[16]

Numbers

Knowns Unknowns
ÐÐÐÐÐÐÐ⇀vriver←shore = 0 or 2 m/s N̂ ÐÐÐÐÐÐ⇀vyou←shore

ÐÐÐÐÐÐ⇀vyou←river = 0 ÐÐÐÐÐÐÐ⇀vfriend←you

ÐÐÐÐÐÐÐÐ⇀vfriend←river = 0 ÐÐÐÐÐÐ⇀vshore←you

Our equations for motion of one object relative to
another work here, though we have never tried to
use them where one object is riding on another.
Taking objects 1, 2, and 3 to be the river, you, and
the shore, respectively…

ÐÐÐÐÐÐ⇀vyou←shore =ÐÐÐÐÐÐ⇀vyou←river −ÐÐÐÐÐÐÐ⇀vshore←river

We aren’t given ÐÐÐÐÐÐÐ⇀vshore←river, but we are given
ÐÐÐÐÐÐÐ⇀vriver←shore, and we have already learned that…

ÐÐÐÐÐÐÐ⇀vshore←river = −ÐÐÐÐÐÐÐ⇀vriver←shore

…So…

ÐÐÐÐÐÐ⇀vyou←shore =ÐÐÐÐÐÐ⇀vyou←river +ÐÐÐÐÐÐÐ⇀vriver←shore

If ÐÐÐÐÐÐÐ⇀vriver←shore = 0 then ÐÐÐÐÐÐ⇀vyou←shore = 0,
and if ÐÐÐÐÐÐÐ⇀vriver←shore = 2m/s N̂ then
ÐÐÐÐÐÐ⇀vyou←shore = 2m/s N̂.
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Now what if you and your friend were deep in con-
versation, not paying any attention to anything ex-
cept each other? If you didn’t happen to notice
that the shore and the shoreline was moving past
you, it would feel to you exactly like you and your
friend were sitting still, and meanwhile the shore is
slipping by at 2 m/s to the South.

Figure 4.3: From the frame of reference of a
person standing on the shore, you and your friend
are moving along with the river.[17]

Figure 4.4: From your frame of reference, you and
your friend are not moving, and a person standing
on the shore is moving South.[17]

Interestingly, ÐÐÐÐÐÐÐ⇀vfriend←you does not depend at all
on the velocity of the river. We can again use
our equations for the motion of one object as seen
from the frame of another, this time taking objects
1, 2, and 3 to be the river, your friend, and you,
respectively.

ÐÐÐÐÐÐÐ⇀vfriend←you =ÐÐÐÐÐÐÐÐ⇀vfriend←river −ÐÐÐÐÐÐ⇀vyou←river

ÐÐÐÐÐÐÐ⇀vriver←shore does not appear in this expression at
all. Regardless of the velocity of the river relative
to the shore, the velocity of your friend relative to
you will always be zero in this scenario.

The same technique can also tell us the velocity of
the shore in your frame of reference as you float
down the river…

ÐÐÐÐÐÐ⇀vshore←you =ÐÐÐÐÐÐÐ⇀vshore←river −ÐÐÐÐÐÐ⇀vyou←river

= −2m/s N̂

In other words, 2m/s South.
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4.2 Boating in a River

Words

If you are in a boat on a still body of water, and
you start rowing South, you will go South. If you
row East, you will go East. And whatever speed
you achieve in the water, that is the speed that
somebody standing on a dock would say that you
are moving. But, things change if you are in a
moving river.

If you are in a river that is slowly flowing East,
and you point your boat south and start rowing,
you will indeed go South. Compared to the water
surrounding you, you will be going directly South.
But to somebody who is standing on a dock, they
would say that you are going both South and East,
because as you row South the current carries you
East.

The actual direction that you move, as seen by
someone on the dock, depends on how fast you
are rowing relative to the speed of the water in the
river.

It is tempting to say that the first boat in Figure
4.5 is moving South, which is correct, and the oth-
ers are moving SouthEast, which is not correct. As
shown in figure 4.1, SouthEast is a specific direc-
tion, halfway between South and East. So unless
we are sure that the boat is traveling in exactly that
direction, we should say that it is traveling South
and East.

Graphics

Figure 4.5: The path taken by a boat in a river,
as seen by someone on a dock, depends on both
the velocity of the boat in the river and the
velocity of the river.[18]

The path taken by the boat can be found graph-
ically by adding the velocity vectors ”tip to tail,”
that is, draw the first vector, then draw the second
so that its tail starts at the tip of the previous one.
Continue with any other vectors that need to be
added together. The resultant vector starts at the
tail of the first vector and ends at the tip of the
last one.

Numbers

Assumptions: all parts of the river flow with the
same velocity.

Knowns Unknowns
ÐÐÐÐÐÐ⇀vboat←river

ÐÐÐÐÐÐ⇀vboat←dock

ÐÐÐÐÐÐ⇀vriver←dock

Again, our equations for relative motion work here.
Taking objects 1, 2, and 3 to be the river, the boat,
and the dock, respectively…

ÐÐÐÐÐÐ⇀vboat←dock =ÐÐÐÐÐÐ⇀vboat←river −ÐÐÐÐÐÐ⇀vdock←river

We aren’t given ÐÐÐÐÐÐ⇀vdock←river, but we are given
ÐÐÐÐÐÐ⇀vriver←dock, and we know that…

ÐÐÐÐÐÐ⇀vdock←river = −ÐÐÐÐÐÐ⇀vriver←dock

…So…

ÐÐÐÐÐÐ⇀vboat←dock =ÐÐÐÐÐÐ⇀vboat←river +ÐÐÐÐÐÐ⇀vriver←dock

In order to add the velocity vectors numerically, you
have to break up each vector into its component
parts, in this case the East/West component (E
subscript below) and the North/South component
(N subscript).
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Let’s consider a situation where you can row the
boat at a speed of 5 m/s, and the river is flowing
at a uniform speed of 4 m/s to the East.

If you were to row directly East, along with the
river, you would move along very quickly. Since
you are rowing the same direction as the current,
the speed of the river would add to your rowing
speed, and someone on the dock would see you
going past at 9 m/s. This is the highest possible
total speed when combining 5 m/s and 4 m/s.

If you were to row directly West, you would be
fighting the river and moving very slowly. At 5
m/s, you can row slightly faster than the flow of
the river. So you would be able to go West but
only at 1 m/s. This is the lowest possible speed
when combining 5 m/s and 4 m/s. If the river
were flowing faster than you could row, you would
not be able to go West at all, but would slowly
go down the river even when paddling upstream as
quickly as you could.

If you were to row directly South, you would go
both South and East, and your speed would be
somewhere between 1 m/s and 9 m/s. For this
example, since you are rowing faster than the flow
of the river, your direction would be somewhere
between South and SouthEast.

Remember, vectors have magnitude and direction,
so as long as you keep the magnitude and direction
of a vector the same you are free to shift it up,
down, left, or right on the page to get the tips &
tails to line up correctly. This same technique will
work with any type of vectors, for example forces,
momentum, displacement, and acceleration.

5 m/s

4 m/s

Velocity of boat

as seen by dock

Figure 4.6: Adding a vector of 5 m/s South to a
vector 4 m/s East gives a resultant vector at an
angle between South and East.[1]

If the velocity vectors are drawn to scale, the resul-
tant vector can be measured with a ruler to get a
good estimate of the speed of the boat as seen by
the dock. A good estimate of the direction can be
found by using a protractor.

From the diagram in Figure 4.6, measurement with
a ruler and protractor gives a speed of approxi-
mately 6.5 m/s, at an angle approximately 40○ East
of South.

vboat←dock,E = vboat←river,E + vriver←dock,E

vboat←dock,N = vboat←river,N + vriver←dock,N

In this example,

ÐÐÐÐÐÐ⇀vboat←dock = −5m/s N̂ + 4m/s Ê

The North/South direction has been assigned a
negative value in the ”North” direction. In other
words, South. It is usually easier to define North
as positive and East as positive when doing calcu-
lations, and then if the final answer is negative you
can describe it as a positive value in the South (or
West) direction.

A vector can also be described in terms of mag-
nitude and direction. Since the North/South and
East/West directions are at right angles to each
other, the magnitude of the resultant vector has to
be found using the Pythagorean theorem:

A2 = A2
x +A2

y (4.1)

…where A is the magnitude of any vector Ð⇀A , Ax

is the x̂ component of the vector, and Ay is the ŷ
component of the vector. In our case, we are using
East and North in place of x and y.

The magnitude of the velocity, in other words the
speed, of the boat as seen from the dock would
be…

vboat←dock =
√
52 + 42 m/s = 6.4m/s
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4.3 Straight Across a River

Words

Let’s consider attempting to cross a river directly
in a boat. If there is any current flowing in the
river, aiming your boat directly across the river will
mean that you will reach the opposite bank at a
point downstream. Is there a way to aim a boat in
such a way that it goes directly across the river?

Suppose we have a river that is 50 meters wide from
North to South, and it is uniformly flowing East at
4 m/s. If a boat is rowed at a speed of 5 m/s
relative to the river, in what direction should it be
pointed so that it crosses directly from the North
bank of the river to the South bank, as seen from
a dock? How much time would be needed to cross
the river in this way?

If we want to end up directly South from our start-
ing point, then we need to make sure that our ve-
locity as seen from a dock is directly South. We
will be in the river, which is flowing East, so that
means that the way we row our boat will have to
exactly cancel out the Eastward flow of the river.
That means our boat will have to be going 4 m/s
West compared to the river, since the river is going
4 m/s East.

Graphics

Figure 4.7: In order to go directly South across
the river as seen from a dock, the boat will need
to be pointed slightly upstream.[18]

If we start by drawing the vector we know, 4 m/s
East, we can rotate the 5 m/s until the resultant
vector is vertical.

4 m/s

5 m/s

Figure 4.8: Finding the angle to make the
resultant vector vertical.[1]

Numbers

Assumptions: all parts of the river flow with the
same velocity.

Knowns Unknowns
ÐÐÐÐÐÐ⇀vriver←dock = 4m/s Ê θboat

vboat←river = 5m/s t
Ð⇀
∆x = −50m N̂

The angle of any vector is related to its x̂ and ŷ
components by sine, cosine, and tangent.

sin θ =
Ay

A
(4.2)

cos θ = Ax

A
(4.3)

tan θ =
Ay

Ax
(4.4)

…where θ is the angle opposite the ŷ component
and adjacent to the x̂ component of Ð⇀A .

θ
A

(hypote
nuse)

Ax (adjacent)

A
y

(opposite)
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The time needed to cross the river will be longer
than if there were no current in the river, because
some of the boat’s velocity has to be used to fight
the flow of the river. The faster the river is flowing,
the longer it will take to cross.

Using a protractor to measure between the 4 m/s
vector and the 5 m/s vector, we find an angle of ap-
proximately 35○, so the direction is approximately
35○ South of West.

It is important to clearly specify the reference di-
rection and which way the angle is measured from
that direction, because compass bearings are mea-
sured differently from angles in mathematics and
physics.

Figure 4.7: Compass bearings start with zero at
North and proceed clockwise. Angles in physics
usually start at East and proceed
counterclockwise.[19]

The speed of the boat as seen from the dock can
be found by measuring the vertical vector in Figure
4.8. It is approximately 3 m/s. This can be used
to determine the amount of time that is needed to
cross the river.

”SOHCAHTOA” is a mnemonic that many people
use to remember Equations 4.2, 4.3, and 4.4:

Sine=Opposite/Hypotenuse,
Cosine=Adjacent/Hypotenuse,
Tangent=Opposite/Adjacent.

In this case, using x̂ and ŷ notation, ÐÐÐÐÐÐ⇀vboat←river has
a magnitude v = 5m/s and a horizontal component
vx = −4 m/s. So we can use Equation 4.3, solving
for θ:

θ = arccos(−4m/s
5 m/s

) = 143○

The normal way to define angles is clockwise from
the positive x axis, so 143○ is in a direction North
and West. Unfortunately, in many cases the inverse
trigonometric functions like arccos do not give the
correct angles on a calculator, because there are
multiple possible correct answers mathematically.
For that reason, it is usually best to start with a
diagram like that in Figure 4.8 and use only positive
values for each part. Finding the θ in the upper
right of that figure,

θ = arccos(4m/s
5 m/s

) = 37○

…so, 37○ South of West. Using Equation 4.4 we
can find that the North/South component of the
velocity is -3 m/s. Since velocity is constant in this
problem, we can use the average velocity to find
the time needed to cross the river.

∆t =
Ð⇀
∆x
ÐÐ⇀vavg

= −50m N̂

−3m/s N̂
= 17 s
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4.4 Kicking in a New Direction

Words

Since we have started considering two dimensions,
we have only looked at motion, not forces, momen-
tum, or energy. Now it’s time to branch out.

A 0.45-kg soccer ball is initially moving at 20 m/s
in a direction 30○ West of North. A player kicks
the ball so that it begins moving at 20 m/s in a
direction 30○ West of South. The time that the
player’s foot is in contact with the ball is 0.02 sec-
onds. How can we describe the ball’s acceleration,
energy, momentum, and the force applied to it dur-
ing the kick?

In the description, the velocity appears to be con-
stant before and after the kick, so the momentum
also must be constant before and after the kick,
and that also means there is no acceleration before
and after the kick.

What happens during the kick?

The initial and final speeds are the same, but the
direction changes, so the velocity changes during
the kick. That means that there was an accelera-
tion, since acceleration is a change in velocity over
time. And the time involved, the time of the kick,
is very short. That means the acceleration had to
be very large to get a large change in velocity in a
small amount of time.

Graphics

Figure 4.8: A soccer player kicking a ball.[11]

Figure 4.9: A sketch of the physical scenario.[1]

Numbers

Assumptions: constant velocity before & after the
kick

Knowns Unknowns
m = 0.45 kg Ð⇀a
Ð⇀v0 = 20m/s @ 30○Wof N E
Ð⇀vf = 20m/s @ 30○Wof S Ð⇀p
∆t = 0.02 s

ÐÐÐÐÐÐ⇀
Ffoot→ball

We should start by breaking the velocities up into
their component parts using Equations 4.2, 4.3,
and 4.4. Since the directions are given in terms
of North, South, East, and West, we can use that
notation.

v0,N = v0 ⋅ cos θ0 = 17.3m/s

v0,E = −v0 ⋅ sin θ0 = −10m/s

vf,N = −v0 ⋅ cos θf = −17.3m/s

vf,E = −v0 ⋅ sin θ0 = −10m/s

Where did the minus signs come from, and why
weren’t the angles converted to normal physics no-
tation, with 0○ pointing East? The sketch in Fig-
ure 4.9 was used to determine positive and nega-
tive signs, and to find appropriate triangles using
the angles given in the question. This is a simpler
approach than converting to normal physics nota-
tion, and avoids the ambiguity in angles that comes
from trusting the output of a calculator.
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If the velocity changes, that means that the mo-
mentum also changes during the kick, which means
that a force must have been applied to the ball.

We know that a force applied in the direction of an
object’s motion speeds it up, and a force applied
opposite the direction of motion slows it down. In
this case, a force acted that didn’t actually change
the speed of the ball! So the force must have been
in a direction other than the direction of motion.

The ball was initially moving North and West, and
after being kicked it was moving South and West.
So we know that there was definitely a change in
the North/South direction. There must have been
an acceleration to the South, which means that
there must have been a force applied to the South,
and a change in momentum to the South.

In order to determine whether a force was also ap-
plied to the East or West, details about the velocity
or momentum in that direction need to be known.

If we assume that the ball stayed on the ground the
whole time, we don’t need to worry about gravita-
tional energy. Kinetic energy depends only on the
speed of the ball, and since the initial and final
speeds are the same, the kinetic energy is the same
before and after the collision.

To find a change in momentum, the momentum
vectors can be subtracted graphically. So far, we
have only learned about adding vectors tip-to-tail.
Subtracting a vector is the same as adding its oppo-
site, and the opposite of a vector is another vector
with the same magnitude and opposite direction.

Ð⇀p0
−Ð⇀p0

Figure 4.10: Finding the opposite of the initial
momentum.[1]

Change in momentum is final momentum minus
initial momentum, so…

Ð⇀pf

Ð⇀
∆p

−Ð⇀p0

Figure 4.11: Finding the change in the
momentum of the soccer ball.[1]

The change in momentum of the ball is due South.
This means that the force applied to the ball and
the acceleration are also due South.

If we assume a constant net force during the kick,
we can find the acceleration:

aE =
vf,E − v0E

∆t
= 0m/s2

aN =
vf,N − v0N

∆t
= −1730m/s2

Combining these, we find Ð⇀a = −1730m/s2 N̂

We can use the masses and velocities to find initial
and final momentum:

p0,N =m ⋅ v0,N = 7.79 kg ⋅m/s

p0,E =m ⋅ v0,E = −4.5 kg ⋅m/s

pf,N =m ⋅ vf,N = −7.79 kg ⋅m/s

pf,E =m ⋅ vf,E = −4.5 kg ⋅m/s

Subtracting initial from final momentum gives
us the impulse caused during the kick: Ð⇀∆p =
−15.6 kg ⋅m/s N̂ .

Then Newton’s Second Law can be used to find
the force on the ball during the kick:

ÐÐÐÐÐÐÐÐ⇀
Fnet,foot→ball =

Ð⇀
∆p

∆t
= −779 N N̂

Since the speed is the same before and after the
kick, we know that the kinetic energy is also the
same before and after the kick:

Ek,f = Ek,0 =
1

2
m⋅v20 =

1

2
(0.45kg)(20m/s)2 = 90 J

Using the velocity vector components instead of the
speed gives the same result for energy.
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4.5 Checking In Ice Hockey

Words

Ice hockey players commonly run into each other
on the ice, often intentionally. During any collision,
external forces can generally be neglected because
the force of the colliding bodies against each other
is so much larger than any other forces that are
acting on them.

If a 90-kg hockey player is moving South across
the ice at 5 m/s and is struck by an 80-kg hockey
player who is moving NorthEast at 6 m/s, what can
we say about the collision and the two players after
the collision? Assume that the collision is perfectly
inelastic, so the two become entangled together,
not bouncing off of each other.

Since this is a collision, we should begin by thinking
about momentum. We know that momentum is
conserved in any collision, whether it is elastic or
inelastic.

Since the 90-kg hockey player was moving South,
that player’s initial momentum is to the South. The
80-kg hockey player was moving NorthEast, so that
player’s momentum was partially North and par-
tially East.

After the two collide and become entangled, their
total momentum has to be the same as their initial
momentum, just as in the one-dimensional prob-
lems we have considered previously. But this time
we have to think about both directions.

Graphics

Figure 4.12: Ice hockey players.[20]

Numbers

Assumptions: external forces are negligible; per-
fectly inelastic collision

Knowns Unknowns
m1 = 90 kg ???
Ð⇀v1,i = −5m/s N̂
m2 = 80 kg
Ð⇀v2,i = 6m/s @ 45○ N of E

The 45○ angle is given, since the direction is listed
as NorthEast, which is half-way between North and
East. Ð⇀v2,i can be broken into its component parts
using Equations 4.2 & 4.3.

Ð⇀v2,i = 4.24m/s N̂ + 4.24m/s Ê

As in one dimension, the place to start in any two-
dimensional collision is conservation of momentum.
But we need to separate the North/South compo-
nents from the East/West components:

pN,f,tot = pN,i,tot

pE,f,tot = pE,i,tot

The North/South component is…

pN,f,tot =m1 ⋅ vN,i,1 +m2 ⋅ vN,i,2

= (90 kg) (−5m/s) + (80 kg) (4.24m/s)
= −111 kg ⋅m/s

And the East/West component is…
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Let’s start with the East/West direction. Initially,
the first hockey player has no momentum in that
direction, and the second hockey player has mo-
mentum to the East. After they collide, they will
still have momentum to the East. So they will end
up moving to the East, at a slower speed than the
second hockey player had initially, because the mo-
mentum that hockey player had before the collision
is shared by the two hockey players after the colli-
sion.

The North/South direction is more complicated.
One hockey player initially has momentum to the
North and the other has momentum to the South.
With their different masses, different speeds, and
the angle, it is difficult to determine whether af-
ter the collision they will be moving slightly North
or slightly South, so the final direction should be
mostly to the East.

Since the first hockey player was initially moving
South and ended up moving mostly East, that
player must have experienced a force during the
collision that was North and East. That makes
sense, because that was the direction the second
player was moving before the collision. This means
that the second hockey player would have experi-
enced an equal and opposite force, South and West.
South is easy to see, because the first hockey player
was initially moving South, and there is a force to
the West because some of the second player’s East-
ward momentum was transferred to the first player.

There was a loss of kinetic energy during the col-
lision; the lost kinetic energy was converted into
thermal energy.

Ð⇀p1,i

Ð⇀ptot

Ð⇀p2,i

Figure 4.13: Finding the total momentum of the
two hockey players.[1]
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Figure 4.14: Energy bar graph for the collision.
Initial thermal energy is taken to be zero.
Gravitational energy is zero because both players
are on the ground before and after the collision.[1]

pE,f,tot =m1 ⋅ vE,i,1 +m2 ⋅ vE,i,2

= 0 + (80 kg) (4.24m/s)
= 339 kg ⋅m/s

We can convert this into magnitude and direction
using Equations 4.1 & 4.4.

pf,tot =
√
(111 kg ⋅m/s)2 + (339 kg ⋅m/s)2

= 357 kg ⋅m/s

θf = arctan
pN,f,tot

pE,f,tot
= −18○

The final momentum is correct, but we need to
check the angle against a sketch of the situation to
be sure. −18○ is South and East, and we can use
Figure 4.13 to see that this is the correct general
direction, so our angle is correct.

Now we can find the final velocity of the hockey
players:

Ð⇀vf =
ÐÐ⇀pf,tot

mtot
= 2.10m/s @ 18○ S of E

Next we can find the initial and final kinetic energy:

Ek,i =
1

2
m1 ⋅ v21,i +

1

2
m2 ⋅ v22,i = 2565 J

Ek,f =
1

2
mtot ⋅ v2f = 375 J

Total energy is conserved, and there is no spring
energy or gravitational potential energy stored after
the collision, so the lost kinetic energy is converted
to thermal energy.
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4.6 Standing on a Rope

Words

We have looked in detail at motion and momentum
in two dimensions. Let’s turn now to look at forces
and energy. Consider the fiddler who is standing
on a rope in Figure 4.15. We will assume that the
fiddler is not moving. What are the forces that are
acting on him? And how much work is he doing?

Take the mass of the fiddler to be 70 kg. The rope
in front of him and behind him is angled up 25○

above the horizontal.

First, it is important to establish the meaning of
the question. One way to look at the situation is
to say that the only two forces that are affecting the
fiddler are the force of gravity, directed downward,
and the normal force of the rope pushing up on his
feet. That makes this problem essentially the same
as the rock sitting motionless on the ground from
Section 1.3, which is a one-dimensional question
that by now is something that we should be able
to answer without much difficulty.

The intent of this question is to investigate the im-
pact of having a rope going off at an angle, so we
will use as our system the fiddler and also the sec-
tion of the rope on which he is standing. We aren’t
given the mass of the rope, and we will assume that
it is negligible compared to the mass of the fiddler.

Graphics

Figure 4.15: A fiddler balancing on a rope.[21]

Figure 4.16: Sketch of the fiddler balancing on a
rope. The blue dotted line indicates the “system”
to be considered when making a free body
diagram.[1]

Numbers

Assumptions: The fiddler is not moving; the mass
of the rope is negligible; the part of the rope under
the fiddler’s feet is part of the system

Knowns Unknowns
m = 70 kg Forces on fiddler
θ1 = 25○ above horizontal W

θ2 = 25○ above horizontal
g = 9.8m/s2

Note that the angles are not necessarily the stan-
dard angles in math–they are as described in the
text and in Figures 4.16 & 4.17.

To analyze this system, we need to separate the
forces shown in Figure 4.17 into x̂ & ŷ components,
using Equations 4.2 & 4.3. There are three forces
to consider, as can be seen in Figure 4.17.

Using +x̂ to the right and +ŷ up…

Fnet,x = Ft,2 ⋅ cos 25○ − Ft,1 ⋅ cos 25○

Fnet,y = Ft,2 ⋅ sin 25○ + Ft,1 ⋅ sin 25○ − Fg

Since the fiddler is not moving in this scenario,
his acceleration is zero. That means, according
to Newton’s Second Law, that ÐÐ⇀Fnet = 0. The x̂
direction tells us that

Ft,2 = Ft,1
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Once we have decided on our system, the forces
that we need to consider are only the forces that
act on our system, not the forces acting inside the
system or the forces of the system acting on some-
thing else. One force that acts on the system is the
force of gravity, which depends on the mass of the
system (in this case, the mass of the fiddler, since
we are neglecting the mass of the rope).

There are also two ropes that connect our system to
things that are outside of the system, and each of
those ropes can have a tension force pulling on the
system. Tension is always a pulling force, just as
the normal force is always a pushing force. Tension
is in the direction of the rope, string, chain, etc,
and if the rope or other object that is being used
to pull is light (often referred to as massless), the
tension is the same along the entire length of the
rope.

Looking at the sketch in Figure 4.16, we can see
that there is symmetry. The angles are the same in
front of the fiddler and behind the fiddler, so if the
fiddler turned around the picture would be exactly
the same. That symmetry tells us that whatever
the tension is in the rope in front of the fiddler is
the same as the tension behind the fiddler.

When considering the amount of work the fiddler is
doing, it was already stated that the fiddler is not
moving, and since work is caused by a force acting
over a distance, if there is no distance moved then
there is no work that is being done.

Fg

Ft,1 Ft,2

θ1 θ2
fiddler

Figure 4.17: FBD for the fiddler[1]

Ð⇀
Fg

ÐÐ⇀
Ft,1

ÐÐ⇀
Ft,2

Figure 4.18: Adding the force vectors graphically.
The net force is zero, so we know that the arrows
have to end in the same place where they
started.[1]

Graphically adding the vectors shows that the hor-
izontal components of the two tension forces have
to cancel out, because the gravitational force does
not have a horizontal component. Graphical addi-
tion also shows that the tension force has a slightly
larger magnitude than the gravitational force, since
all the tension arrows are slightly longer.

…so the ŷ direction tells us…

2 ⋅ Ft,1 ⋅ sin 25○ = Fg

The magnitude of the force of gravity in this situ-
ation is given by Fg =m ⋅ g, so…

Fg =m ⋅ g = 686 N

Solving for Ft,1, we get…

Ft,1 =
Fg

2 ⋅ sin 25○
= 812 N

Because of the angles involved, the tension in the
rope is actually larger than the force of gravity!

Now we can find the work that the person is doing:

W =
Ð⇀
F ⋅
Ð⇀
∆x

And since there is no motion Ð⇀∆x = 0, so W = 0.
No work is being done.
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4.7 Pulling a Sled

Words

Figure 4.19 shows a moose that is connected to a
sled. Imagine that the moose is pulling the sled
across level ground at a constant velocity of 3 m/s
to the left. The strap that it pulls with is at an
angle of 30○ above the horizontal, the mass of the
loaded sled is 200 kg, and the magnitude of the
frictional force between the sled and the ground is
800 N.

Analyze this physical scenario as thoroughly as you
can.

We are given very little information about the
moose, so we should instead focus on the sled for
our analysis. Since the velocity is constant, there
are several things that we know immediately:

• The momentum has to be constant.

• The kinetic energy has to be constant.

• The acceleration, which is the change in ve-
locity over time, has to be zero.

• Since the momentum is constant (or since
the acceleration is zero), the net force on the
sled has to be zero. In other words, the forces
are balanced.

Graphics

Figure 4.19: A moose strapped to a sled.[22]

Motion Map

4 s 3 s 2 s 1 s 0 s

Figure 4.20: Motion map of the sled moving to
the left at constant velocity.[1]

We could draw a momentum vs time graph, or
an energy bar graph with only one bar, but usu-
ally those are only useful when we want to show a
change in something. Since momentum and energy
are both constant, drawing them is not very useful.

Numbers

Assumptions: +x̂ direction is to the right; +ŷ di-
rection is upward

Knowns Unknowns
m = 200 kg ???
θ = 30○ above horizontal
Ð⇀v = −3m/s x̂
Ff = 800 N

We can find the momentum of the sled is given by:

ÐÐ⇀psled =m ⋅Ð⇀v = −600 kg ⋅m/s x̂

We can also find the kinetic energy:

Ek,sled =
1

2
m ⋅ v2 = 900 J

Acceleration is zero since velocity is not changing:

Ð⇀a =
Ð⇀
∆v

∆t
= 0

Since Ð⇀a = 0, Newton’s Second Law tells us that
the net force is also zero. So the sum of the forces
in both the x̂ and the ŷ directions must be zero.

Fnet,x = Ff − Ft ⋅ cos θ = 0

We are given Ff , so we can solve for Ft:

Ft =
Ff

cos θ
= 923 N
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The force of gravity is balanced partly by the nor-
mal force but also partly by the upward part of the
tension in the strap, so the normal force should be
less than the gravitational force in this case. The
forward part of the tension force needs to be just
large enough to balance the force of friction.

The net work that is being done is zero, since the
energy is not changing, but in fact the moose is
doing work by pulling the sled, and the frictional
force is doing negative work to try to stop the sled.

Work is caused by a force being applied through
a displacement, and the displacement is constantly
increasing in time since the sled is moving at a
constant velocity. That means that the moose is
doing a constant amount of work per time.

In physics we have a special name for work per
time: Power. Power is measured in watts, where 1
watt is 1 joule per second.

Fn

Fg

Ft

Ff

θ sled

Figure 4.21: FBD for the sled, with guesses about
the magnitudes of each arrow.[1]

Ð⇀
Fg

Ð⇀
Ff

Ð⇀
Fn

Ð⇀
Ft

Figure 4.22: Adding the force vectors graphically.
The net force is zero, so we know that the arrows
have to end in the same place where they
started.[1]

Just from adding the force vectors graphically with
correct directions but without doing calculations
for magnitudes, we can see that the only way the
net force can be zero is for the normal force to be
smaller than the gravitational force and for the hor-
izontal component of the tension force to exactly
cancel the frictional force.

Figure 4.21 shows us that

Fnet,y = Fn + Ft ⋅ sin θ − Fg = 0

Fg is the mass times the acceleration of gravity, or
1960 N. We can solve for the only thing we don’t
know in that mathematical model, Fn.

Fn = Fg − Ft ⋅ sin θ = 1500 N

The force of friction is opposing the direction of
motion, so as the sled moves, friction is doing
negative work on the sled. The moose is doing
positive work on the sled, so that the net work is
zero. The amount of work done by the moose is…

W = F ⋅∆x ⋅ cos θ

But we don’t have a displacement in this scenario.
The displacement increases over time, so the work
also increases over time. The moose is doing a con-
stant amount of work per unit time, or supplying a
constant power:

P = W

∆t
= F ⋅∆x ⋅ cos θ

∆t
(4.5)

…where P is power, and the equation is valid while
the force is constant. Power can also be expressed
as…

P = F ⋅ v ⋅ cos θ (4.6)

So the power supplied by the moose is:

Pmoose = Ft ⋅ v ⋅ cos θ = 2400W
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4.8 Pulling a Frictionless Sled

Words

Let’s consider the same physical scenario as in Sec-
tion 4.7, but this time consider what would happen
if there were no friction between the sled and the
ground.

If the moose started at rest and pulled the 200 kg
sled with the same force as before, 923 N, at an an-
gle of 30○ above the horizontal, across a horizontal
distance of 50 m, what would happen?

Again, we are given very little information about
the moose, so we should instead focus on the sled
for our analysis.

The moose is generating a force that is acting over
a certain distance, so a good starting point would
be to consider the work that the moose is doing.
The moose does work on the sled, which increases
the kinetic energy of the sled. At first the sled is
not moving, so it begins with zero kinetic energy.
The sled stays on level ground the entire time, and
there are no springs to worry about, so all of the
work done by the moose is converted into kinetic
energy.

Graphics

Figure 4.23: A moose strapped to a sled.[22]

Fn

Fg

Ft

θ sled

Figure 4.24: FBD for the sled, with arrow lengths
based on the forces found in Section 4.7.[1]

Numbers

Assumptions: +x̂ direction is to the right; +ŷ di-
rection is upward; no air resistance

Knowns Unknowns
m = 200 kg ???
Ft = 923 N
θ = 30○ above horizontal
∆x = −50m x̂

Ff = 0 N

Since there is no acceleration in the vertical direc-
tion, our analysis of the y components of force in
Section 4.7 where Fnet,y = 0 remains valid. But we
need to reconsider Fnet,x

Fnet,x = −Ft ⋅ cos θ = −800 N

Since we know the mass of the sled, we can also
find its acceleration:

Ð⇀a =
ÐÐ⇀
Fnet

m
= −4m/s2

Given net force and displacement, we can use work
to find final kinetic energy:

Wnet = Fnet ⋅∆x ⋅ cos θ =∆Ek = Ek,f −Ek, i
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The net force on the sled gives it an acceleration
in the same direction as the net force, to the left.
Since the sled started at rest, its speed will increase
to the left over the entire time that the moose is
pulling. That also means that the momentum will
be increasing to the left the entire time that the
moose is pulling.

In the physical situation examined in Section 4.7,
the velocity was constant, so the power supplied
by the moose was constant. In this situation, the
speed is increasing, so every second the moose is
covering more distance than it did in the previous
second. That means every second the moose is
doing more work than it did in the previous second.

So the amount of power that the moose is produc-
ing increases as its speed increases. For any real
creature or machine, the power it can produce lim-
its the amount of force that it is able to apply to
an object. Typically a larger force can be applied
when the object is moving at a low speed, and as
speed increases power becomes the limiting factor.

Ð⇀
Fg

Ð⇀
Ft

Ð⇀
Fn

ÐÐ⇀
Fnet

Figure 4.25: Adding the force vectors graphically
shows that there is a net force to the left.[1]
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Figure 4.26: Velocity of the sled.[1]

…where θ is the angle between ÐÐ⇀Fnet and Ð⇀∆x, not
the angle of the strap that the moose is using to
pull the sled.

Ek,f = (800 N) ⋅ (50m) ⋅ cos 0○ = 40 000 J

From here, we can find the final speed of the sled:

Ek,f =
1

2
m ⋅ v2f

Interestingly, since we found acceleration earlier
we could have found the velocity in a more direct
route. Multiplying the above equation for Wnet by
2, dividing by m , and rearranging it slightly gives:

2a ⋅∆x ⋅ cos θ = v2f − v2i (4.7)

This is commonly considered to be a standard equa-
tion of motion.

Once we have the final velocity and the accelera-
tion, we can also find the time needed for the moose
to pull the sled 50 m.

The power that the moose uses to pull the sled
increases over time, even though the force stays
the same. This can be seen from Equation 4.6,
knowing that the velocity is constantly increasing
in time since the force is constant.The maximum
power will be needed at the maximum speed:

Pmax = Fnet ⋅ vf ⋅ cos 0○
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4.9 Waterslide

Words

The waterslide shown in Figure 4.27 has an ex-
tremely steep slope at the top. Water is used to
lubricate the slide during operation, making it es-
sentially frictionless.

The slide has a height of 9 m and the slope goes
down at an angle 70○ from the horizontal. If a
50 kg rider starts at the top at rest and slides down
the steep slope, what is her acceleration down the
steep slope, what is her speed when she reaches
the bottom of the steep slope, and how much time
does it take her to reach the bottom of the steep
slope?

We need to consider the acceleration down the
slide. Acceleration is a vector, so it includes di-
rection. We could specify the direction of the ac-
celeration using x and y components, or a mag-
nitude in some direction, but it would be easier if
we just create a way to refer to the direction down
the slope. We can call that the “parallel” direction,
and then the “perpedicular” direction would be at
a right angle to the direction of the slope.

If the slope were completely flat, then the rider
would just sit there, not accelerating. If the slope
were completely vertical then the rider would be
in free-fall, accelerating down the slope with the
acceleration of gravity g. For slopes in between
these extremes, the acceleration should be between
zero and g. The steeper the slope, the closer the
acceleration would be to g.

Graphics

Figure 4.27: A waterslide.[23]

Figure 4.28: A sketch of the rider on the
waterslide. x̂ & ŷ axes are shown, as are ∥̂ & ⊥̂
axes.[1]

Numbers

Assumptions: +x̂ direction is to the right; +ŷ di-
rection is upward; +∥̂ direction is down the slide;
+⊥̂ direction is normal to the surface of the slide

Knowns Unknowns
m = 50 kg Ð⇀a
θ = 70○ above horizontal vf

y0 = 9m ∆t

yf = 0m
v0 = 0m/s
Ff = 0 N

We can use work and energy to find the speed at
the bottom of the slope. There are no external
forces or springs, and no friction to generate ther-
mal energy, so we only need to consider kinetic and
gravitational potential energy.

Ek,i +Ug,i = Ek,f +Ug,f

Taking ground level to be y = 0…

0 +m ⋅ g ⋅ y0 =
1

2
m ⋅ v2f + 0

vf =
√
2g ⋅ y0 = 13.3m/s
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If there is really no friction on the waterslide, then
the only forces affecting the rider are gravity and
the normal force. And since the motion is per-
pendicular to the normal force, the normal force
doesn’t do any work on the rider. So it is only
gravity that affects the rider’s energy. Since energy
is conserved, all of the rider’s gravitational poten-
tial when she is at the top of the waterslide will be
converted to kinetic energy when she reaches the
bottom. Surprisingly, that means it doesn’t actu-
ally matter how steep the slope is–the speed at the
bottom will be the same if the rider has dropped
the same vertical distance.

The amount of time that the rider takes to reach
the bottom will depend on how steep the slope
is. If the slope is steep then the distance traveled
will be short and the acceleration will be large. If
the slope is shallow, then the distance traveled will
be longer and the acceleration will be smaller, and
both of these changes will mean a longer time to
the bottom with a more shallow slope.

In our everyday experience, we would say that the
rider would be going faster at the bottom if the
slope is steep. That is correct, because in everyday
life the friction is never really zero, and in fact the
frictional force would be smaller when the slope is
steeper.

Fn

Fg

rider

Figure 4.29: FBD of the rider on the waterslide.[1]

Since the acceleration of the rider is in the parallel
direction, the net force also has to be in the parallel
direction, giving us the relative magnitudes of Fg,
Fn, and Fnet.

Ð⇀
Fg

Ð⇀
Fn

ÐÐ⇀
Fnet

Figure 4.30: Adding the force vectors
graphically.[1]

If we knew the rider’s displacement from the top to
the bottom of the steep slope, we could use Equa-
tion 4.7 to find her acceleration down the slope.
The magnitude of the displacement is the length
of the steep slope, which we can find from Figure
4.28 using Equation 4.2:

∆x = y0
sin 70○

Since the displacement and the acceleration are
both in the positive parallel direction, Equation
4.7 gives…

2a∥ ⋅∆x∥ ⋅����:1
cos 0○ = v2f − 02

a∥ =
v2f

2∆x∥
= 2g ⋅ y0
2 y0

sin 70○

= g ⋅ sin 70○

Which means that the force due to gravity down a
slope is given by

Fg,∥ =m ⋅ g ⋅ sin θ

…where the positive parallel direction is down the
slope and θ is the angle of the slope above the
horizontal.

In the direction perpendicular to the slope, the
gravitational force pointing into the slope exactly
cancels the normal force out of the slope. Using
Figure 4.30 and Equation 4.3…

Fg,⊥ = −m ⋅ g ⋅ cos θ

…where the positive perpendicular direction is up
out of the slope and θ is the angle of the slope
above the horizontal.
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4.10 Summary

Chapter summaries in this book are ordered by concept, not necessarily in the order in which they are
presented in the chapter. Mathematical models are grouped together at the end of each summary. See the
appendices for the meanings of all symbols used in this book.

General

• For our analyses, the two dimensions being considered must be at right angles to each other.

• The two dimensions can be considered completely independent from each other in terms of forces,
momentum, and motion. For example, a force in the vertical direction does not affect motion in the
horizontal direction.

• Vectors can be added numerically by breaking them up into components and adding the components
separately.

• In a problem involving compass directions, it is often convenient to call South “negative North” and
West “negative East” while doing calculations, but the final answer should be given in positive values
North, South, East, and/or West.

• SouthEast, NorthEast, etc. are specific directions exactly halfway between, for example, South and
East. “South and East” can refer to any direction between South and East.

• The bearings on a compass are not the same as the standard angles used in mathematics and physics.
In physics, angles are normally measured counterclockwise from the positive x axis.

• It is important to sketch a physical situation when dealing with angles, so you have a general idea of
the directions. Trusting in a calculator alone to give a correct answer for an angle is risky, because
for every trigonometric function there are multiple angles that give the same answer.

• Vectors can be added graphically by combining them “tip to tail,” with the resultant vector starting
at the tail of the first vector and ending at the tip of the last vector. This provides a good estimate
of the resultant vector if the drawing is made and measured carefully.

• Subtracting a vector is the same as adding the opposite of the vector. The opposite of a vector is
another vector with the same magnitude and opposite direction.

Vector 1 Vector 2 -Vector 2 Vector 1 + Vector 2 Vector 1 - Vector 2

Sample addition and subtraction of vectors [1]

Forces

• If a force is applied in a direction that is not in the direction of an object’s motion and not opposite
the direction the object’s motion, the speed of the object may not change, but the direction of its
motion will change.

• Tension is a pulling force that is in the direction of the string, rope, chain, etc.

• If a rope or other object that is being used to pull is light (often referred to as massless), the tension
is the same along the entire length of the rope.



Motion

• The mathematical models that are used to compare relative motion between different objects also
work when one object is riding on another.

Momentum

• For isolated systems in 2-D, the momentum in one dimension (e.g. the x direction) is conserved and
the momentum in the other dimension (e.g. the y direction) is conserved.

Energy

• Since kinetic energy does not depend on the direction of an object’s motion but on its speed, it
doesn’t matter whether you calculate the kinetic energy using vector components separately or simply
using the speed.

• Power is work per time. It is measured in watts.

• 1 watt is 1 joule per second.

• For any real creature or machine, power limits the force that it can produce. Typically a larger force
can be applied at low speeds and power becomes the limiting factor at high speeds.
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Mathematical Models

equation restrictions on the validity of the equation

A2 = A2
x +A2

y (4.1)
right triangle

“Pythagorean theorem”

sin θ = Ay

A
(4.2) calculator may give wrong theta–confirm with a sketch

cos θ = Ax

A
(4.3) calculator may give wrong theta–confirm with a sketch

tan θ = Ay

Ax
(4.4) calculator may give wrong theta–confirm with a sketch

P = W
∆t
= F ⋅∆x⋅cos θ

∆t
(4.5) only valid when the force is constant

P = F ⋅ v ⋅ cos θ (4.6) only valid when the force is constant

2a ⋅∆x ⋅ cos θ = v2f − v2i (4.7) only valid when the net force is constant



4.11 Questions

Questions are ordered according to Bloom’s Taxonomy, progressing from regurgitating information (Level
1) to synthesizing new information with previous knowledge to create something new (Level 6). The bold
letters at the beginning of each question indicate whether the question involves Words [W], Graphics [G],
and/or Numbers [N]. See the appendices for conversion factors.

Level 1 - Remember

4.1 [G & N] Which gives the most accurate result, adding vectors graphically or numerically?

4.2 [W & G] Describe the direction that the boat in Figure 4.5 is moving, in terms of compass directions.

4.3 [W & N] Add labels to each equation in the “Mathematical Models” section of the summary that
tell what the symbol to the left of the = sign represents.

Level 2 - Understand

4.4 [W & N] Why is it especially important to sketch physical scenarios instead of just trusting a calculator
when it comes to angles?

4.5 [N] How much thermal energy was generated in the collision described in Section 4.5?

4.6 [W & G] Motion maps can be drawn in two dimensions. Create a motion map showing the soccer
ball from Section 4.4 from three seconds before the kick to three seconds after the kick.

4.7 [N] What are the initial momenta for each of the ice hockey players in Section 4.5, in the earth’s
reference frame?

4.8 [G & N] Equation 4.6 includes an angle θ, but the text doesn’t say what the angle is. Based on what
you know about Equation 2.4, what would this θ be measured between? Make a sketch that shows
the angle θ in relation to the other variables in this mathematical model.

4.9 [N] In the calculation of Ek,f in Section 4.8, 0○ is used for θ, but in the “knowns” it says θ = 30○. Is
this an error in the text? Explain your answer.

Level 3 - Apply

4.10 [G & N] For the physical scenario considered in Section 4.2, the velocity of the boat as seen by
the dock is calculated in component form, and the magnitude of the velocity is also found, but the
direction is not found. Find the direction.

4.11 [N] At the end of Section 4.4, a statement is made that using velocity vector components instead of
speed gives the same result when calculating kinetic energy. Verify this statement by calculating the
initial and final kinetic energy of the soccer ball in Section 4.4 using the N̂ and Ê components of the
velocity and comparing to the given result that was calculated using the speed.

4.12 [G & N] If everything else stayed the same, what initial speed of the first hockey player in Section 4.5
would have resulted in a final momentum that was due East?

4.13 [G & N] If everything else stayed the same, what initial speed of the second hockey player in
Section 4.5 would have resulted in a final momentum that was due East?



4.14 [G] Create a motion map representing the position of the sled in Section 4.8 as the moose pulls it
50 m.

4.15 [G & N] The final velocity and maximum power are not calculated in Section 4.8. Calculate values
for them.

Level 4 - Analyze

4.16 [W, G, & N] If the river in Section 4.2 were 50 m wide like the river in Section 4.3, how much time
would the boat need to cross the river if it were pointed directly South? What is the best direction
in which to angle a boat if you want to cross the river as quickly as possible with no regard for the
distance the boat travels downstream?

4.17 [W & G] First, draw the motion map for the soccer ball from the question in the “Level 2 - Under-
stand” section. Then, explain how the motion map shows the acceleration during the kick.

4.18 [G & N] Find the direction of the force that would have to be applied to the soccer ball in Section 4.4
in order for its final velocity to be…

(a) …due East at 20 m/s.
(b) …due West at 10 m/s.
(c) …20 m/s @ 30○ East of South.

4.19 [N] Find the magnitudes and directions of the forces on each hockey player in the collision described
in Section 4.5, if the length of time that the two players are crashing into each other is 0.05 seconds.

4.20 [W, G] Redraw Figures 4.16, 4.17, and 4.18 for the rope at the following angles, and describe how
the magnitude of the tension force in the ropes would be different from that with the rope at the
original angle.

(a) θ = 75○ above the horizontal
(b) θ = 5○ above the horizontal

Level 5 - Evaluate

4.21 [W, G, & N] According to Section 4.2, for a boat moving at a speed of 5 m/s relative to a river
whose speed is 4 m/s, the highest possible speed for the boat as seen from the dock is 9 m/s, and the
slowest possible speed is 1 m/s. Is there any direction that the boat could travel such that its speed
relative to the water is still 5 m/s, and the speed of the boat relative to the dock is also 5 m/s? If
not, explain why not. If so, find the direction graphically or numerically.

4.22 [W, G, & N] Describe using words and either graphics or numbers how the acceleration, final energy,
and final momentum of the soccer ball in Section 4.4 would have been different if the force applied
to the ball during the kick were doubled and the time remained the same.

4.23 [W, G, & N] Consider the physical scenario described in Section 4.5. Are the speeds and masses
reasonable? Is the assumption about the collision being perfectly inelastic reasonable? Give reasons
for your answers.

4.24 [W, G, & N] Analyze the physical scenario of the moose pulling the sled in Section 4.8 if the mass of
the sled were to be cut in half and all other given quantities remained the same. What effect would
this have on the motion, momentum, forces, energy, and power?

4.25 [W, G, & N] Analyze the physical scenario of the moose pulling the sled in Section 4.8 if the mass
of the sled were to be cut in half and the pulling force of the moose were also cut in half. What effect
would this have on the motion, momentum, forces, energy, and power?



4.26 [W, G, & N] Is the final speed attained by the moose and sled in Section 4.8 reasonable? Explain
your answer. If it is not reasonable, what faulty assumptions or unrealistic starting parameters result
in an unreasonable answer?

Level 6 - Create

4.27 [W, G, & N] At the beginning of Chapter 1 in Figure 1.1 was a template for a concept map. Add
the main ideas from this chapter to the concept map that you began for the question at the end of
Chapter 1.

4.28 [W, G, & N] Imagine you are writing a test question related to this chapter. Think of your own
example of a situation that you can analyze using the concepts, graphics, and mathematical analyses
described in this chapter. Describe the situation, and use the tools from this chapter to analyze the
situation as completely as you can, including motion, forces, energy, and momentum.

4.29 [W, G, & N] Think about possible misconceptions about the material in this chapter. Write a
question and an incorrect solution to it that demonstrates a student making such a conceptual error.
This cannot be a simple misuse of a vocabulary word, a unit error, or a mathematical error like
making an addition error or multiplying when addition was needed, unless the error is rooted in a real
misunderstanding about the physics behind the calculation or the misuse of a word. After you have
written the question and incorrect solution, explain what is wrong with the student’s solution, and
write a correct solution to the problem. Note: You may use a question from this chapter that you
got wrong the first time, and explain the initial error in your thinking and how you corrected it.





Chapter 5

Variable Forces

Figure 5.1: A spring scale, which changes in length as
the tension force changes.[24]

So far, we have considered only situations where
force is constant. That makes life easier, and it
allows us to use reasonably simple mathematical
models. But the world isn’t simple, and now it is
time to begin addressing situations where forces
change.

Many machines are built in such a way that they
can use a small force to generate a larger force.
This is true, for example, with pulleys, screw-
drivers, pliers, and systems of gears. We will look
at a system of pulleys to demonstrate how a small
force can be used to create a larger force.

In the spring scale shown in Figure 5.1, the dis-
tance between the ends of the scale is related to
the amount of force applied by the scale. That’s
what makes it function as a scale–you can read the
position to know the amount of force. So with a
spring, force is dependent upon displacement.

Another example of a force that changes depend-
ing on the physical scenario is frictional force. Fric-
tion opposes the relative motion between two ob-
jects, so if the direction of motion changes, the
direction of the frictional force also changes. If
the two objects are not moving relative to each
other, the frictional force changes depending on
the net force created by all other forces, adjusting
to keep the total net force at zero so the objects
remain stationary relative to each other.

Finally, we will look again at gravitational force. We have been using g as the acceleration due to gravity,
but that is only true at the surface of the earth. In fact, the force of gravity changes with distance from
the center of the earth...and with distance from the center of everything else in the universe.



5.1 Pulleys

Words

A pulley is a wheel that can spin around an axle,
with a rope, chain, etc., that goes around the outer
edge of the wheel. For now we will assume that
both friction and the mass of the pulleys is negligi-
ble. Such pulleys can freely rotate, so a rope that
is wrapped around a pulley has the same tension on
each side of the pulley. Wrapping a rope around a
pulley effectively changes the direction of the mo-
tion of the rope and the direction of the tension.

We will consider a 4-kg mass hanging from a single
pulley that is held up using a rope that is wrapped
around two pulleys as shown in Figure 5.2. Note
that there are three ropes in the figure: one wrapped
around the pulleys, and one connected to the cen-
ter of each pulley. One end of the longest rope is
connected to the ceiling and the other end is pulled
down by an applied force. The mass is moving up-
ward at a constant speed of 3 m/s. We should be
able to find the tension in all three ropes and the
magnitude of the applied force that is needed to lift
the mass at a constant speed. We should also be
able to find the amount of power that is being used
to lift the mass and the amount of power supplied
by the applied force.

Looking at Figure 5.2, there are actually two sec-
tions of rope 1 that together hold up the mass.
Since the mass is not accelerating, the forces are
balanced; the tension in rope 1 must be half of the
weight of the mass.

Graphics

Figure 5.2: A system of two pulleys being used to
lift a 4 kg mass. Note that there are three
different ropes, labeled 1-3.[1]

Fg

Ft,1 Ft,1

Figure 5.3: FBD of the 4 kg mass and the pulley
closest to it.[1]

Numbers

Assumptions: friction is negligible; mass of pulleys
is negligible; near the surface of the earth; upward
is +ŷ.

Knowns Unknowns
m = 4 kg Ft,1

vmass = 3m/s Ft,2

g = 9.8m/s2 Ft,3

Fapplied

Plift

Papplied

Since the mass is moving at constant speed, its
acceleration is zero. That means the net force on
the mass is zero. Using Newton’s Second Law with
the free-body diagram in Figure 5.3…

ÐÐ⇀
Fnet =m ⋅���

0
Ð⇀a

2Ft,1 −m ⋅ g = 0
2Ft,1 =m ⋅ g

Ft,1 =
m ⋅ g
2

Ft,1 = 19.6 N

Since the tension force in rope 1 is the same every-
where, we can see from Figure 5.2 that Fapplied is
the same as Ft,1. A similar analysis on the pulley
closest to the mass shows that Ft,3 is 39.2 N.
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Rope 3 only has one section, so its tension has to
be equal to the weight of the mass since the mass
is not accelerating.

The applied force supplies the tension on one side
of rope 1, so the applied force is also half of the
weight of the mass. This system of pulleys creates a
type of machine that creates an output force (used
to lift the mass) that is twice as large as the input
(applied) force, so we say that this machine has
a “mechanical advantage” of two. Mechanical ad-
vantage is simply the ratio of the output force to
the input force.

At first, it may seem that doubling the force should
also double the power since power is proportional to
force and velocity. That would violate conservation
of energy, so that shouldn’t be possible. As can be
seen in Figure 5.5, the rope at the position of the
applied force is moving faster than the mass. The
increased speed is just enough to make the output
power the same as the input power. So energy
is conserved even in a machine with a mechanical
advantage that is greater than 1.

Ft,3

Ft,1 Ft,1

Figure 5.4: FBD of the pulley closest to the 4 kg
mass.[1]

Figure 5.5: The applied force has to move twice
as quickly as the mass in this system. Notice that
when the mass rises by ∆y both the left section
and the middle section of rope 1 get shorter by
∆y, so for the rope to stay the same length the
right section has to get longer by 2∆y.[1]

The mechanical advantage MA of a machine is
given by…

MA =
Foutput

Finput
(5.1)

In this situation…

MA =
Foutput

Finput

= 39.2 N

19.6 N
= 2

We can also find the power needed to lift the mass:

P = W

∆t
= ∆E

∆t

= m ⋅ g ⋅∆y

∆t

=m ⋅ g∆y

∆t

= (4 kg) (9.8m/s2) (3m/s)
= 118W

The power supplied by the applied force can be
found using the velocity. But we need to be care-
ful, because as illustrated in Figure 5.5, the applied
force is moving at twice the speed of the mass.

P = F ⋅ v ⋅���:1
cos θ

= (19.6 N) (6m/s)
= 118W
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5.2 Spring Scale

Words

Springs are physical objects that are usually made
from metal because of many metals’ ability to re-
turn to their original shape after being flexed.
Springs can produce force, and they can also store
potential energy. For an ideal spring, the force re-
quired to stretch or compress it is proportional to
the amount of extension or compression. This
is referred to as “Hooke’s Law.” We will consider
only ideal springs. Real springs are more compli-
cated. They do not obey Hooke’s Law when the
compression or extension is large, and can become
permanently deformed if stretched too far.

Let’s consider the spring inside the scale shown in
Figure 5.6. If the markings represent the mass of
an object that is hanging from the hook, measured
in kg, and the spacing between each number is
0.01 m, what is the stiffness of the spring, and how
much potential energy is stored in the spring if a
5 kg mass is hanging from the hook?

It is important to notice that the numbers on the
scale do not refer to the length of the spring. They
refer to how far the spring is compressed from its
natural length.

Graphics

Figure 5.6: A spring scale and a schematic of the
way the spring is connected inside.[25]

The ring at the top of the scale is connected to
the orange body of the scale, which is connected
to the bottom of the (purple) spring inside. The
black hook at the bottom of the scale is connected
to a rod that passes up through the spring and is
connected to the top of the spring. Pulling down
on the hook presses down on the top of the spring.

Numbers

Assumptions: ideal spring

Knowns Unknowns
0.01 m/kg ks

Us for 5 kg

ks, the spring constant, is a measure of the stiffness
of a spring. It is defined using Hooke’s Law:

Ð⇀
Fs = −ks ⋅

Ð⇀
∆x (5.2)

…whereÐ⇀Fs is the force of the spring acting on what-
ever is extending or compressing it, ks is the spring
constant, and Ð⇀∆x is the displacement of the end of
the spring from its unstretched and uncompressed
“equilibrium” position.

ks always has a positive value. The minus sign in
Equation 5.2 tells us that the force applied by the
spring is opposite the direction of the displacement.
For example, if a spring is stretched to the right,
it will be pulling to the left.

Hanging one kg from this scale compresses the
spring by 0.01 m. We can use this information
to find the spring constant with Equation 5.2. As
can be seen in the free body diagram in Figure 5.7
when the system is in equilibrium, all of the forces
that are acting on the 1 kg mass are in the verti-
cal direction. So we only need to consider the ŷ
components of the forces.
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The stiffness of the spring is measured in terms of
its spring constant, in newtons per meter. A stiffer
spring (higher spring constant)will compress less
when a force is applied.

If a spring is not stretched or compressed, it can-
not do any work, so it has no spring potential en-
ergy. But if work is done on the spring to stretch or
compress it the work gets stored as spring potential
energy. The farther a spring is stretched or com-
pressed, the more energy it stores. A stiffer spring
also stores more energy than a less stiff spring
if both are stretched or compressed by the same
amount.

An ideal spring stores the same amount of energy
whether it is stretched or compressed, if the amount
of extension or compression is the same. Spring po-
tential energy is another type of mechanical energy.

Spring force, like other forces we have considered
so far, is referred to as a “conservative force.”
This means that energy is conserved by the force–
it is essentially converting energy between poten-
tial (spring) energy and kinetic energy. It doesn’t
matter how many times the spring compresses and
expands, the energy will be conserved. A non-
conservative force would be one that transforms
energy into a form other than kinetic or potential
energy. With a non-conservative force, the amount
of kinetic and potential energy that is “lost” to an-
other form of energy depends on the path that was
traveled by the object. If it went back and forth
multiple times, for example, the final total kinetic
and potential energy would be lower.

Fs Fg

mass,
hook,
& bar

Figure 5.7: FBD of the mass, hook, and metal bar
when the system is in equilibrium.[1]
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Figure 5.8: As the distance the spring is stretched
(or compressed) increases, the force required to
stretch (or compress) it also increases in linear
fashion.[1]

Fnet,y = 0 = (−ks ⋅ (−0.01m)) − (m ⋅ g)

ks =
m ⋅ g
0.01m

=
(1 kg) ⋅ (9.8m/s2)

0.01m
= 980 N/m

We have not only found the value for the spring
constant; we have also found that the unit for the
spring constant is [N/m].

To find energy stored in the spring, we need to con-
sider how much work is used to stretch or compress
the spring. Work is done by a force acting over a
distance, so we need the distance that the spring
is compressed when a 5 kg mass is hung from it.
We could use Hooke’s law, but it is simpler to note
that we found ks by knowing that the spring com-
presses by 0.01 m/kg. So a simple ratio tells us the
distance:

(5 kg) ⋅ (0.01m/kg) = 0.05m

We can use Figure 5.8 to find the work that was
done in compressing the spring by finding the area
under the curve. It is triangular, so the area is 1

2
b⋅h.

The base is 0.05m, and the height is the magnitude
of the force associated with the maximum distance:

Fs =ks ⋅∆x

The area under the curve is therefore:

W = 1

2
⋅∆x ⋅ ks ⋅∆x = 1

2
⋅ ks ⋅∆x2

So the potential energy stored in a spring is given
by…

Us =
1

2
⋅ ks ⋅∆x2 (5.3)
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5.3 Bouncing Ball

Words

The collision between a tennis ball and a concrete
driveway was recorded using high-speed video at a
frame rate of 240 frames per second. Five consec-
utive frames are shown from left to right in Figure
5.9. The tennis ball has a mass of 57 g and a diam-
eter of 6.6 cm. Analyze the motion, forces, energy,
and momentum in this situation, considering the
vertical direction only.

By using the tennis ball as a length scale, we should
be able to determine the initial velocity from the
first two images and the final velocity from the last
two images.

We can also use the distance above the ground
to determine the gravitational potential energy in
each frame.

We do not know the exact length of the time the
collision lasted, the time that the ball was touching
the ground, but we can see that the collision had
not yet started in the second image and was finished
by the fourth image, so the time of the collision was
less than 1/120 s.

Looking at the series of images, it is clear that the
most significant changes revolve around the time of
the collision. The ball is badly misshapen when it
is touching the ground, and the direction of motion
(and the direction of the momentum) reverses dur-
ing that time as well. So we will focus our attention
on the center frame.

Graphics

Figure 5.9: Still frames of a tennis ball bouncing
off of concrete. The images, left to right, were
taken at a rate of 240 frames per second. Note
the flattening of the ball in the center frame.[1]

The still frames in Figure 5.9 are shifted compared
to each other. The ball is not actually moving to
the right. Careful comparison with the background
shows that in fact the ball has a small horizontal
velocity to the left. For this analysis, the slight hor-
izontal motion is neglected and the ball is assumed
to be moving only vertically.

Numbers

Assumptions: No horizontal motion; +ŷ direction
is upward; no initial thermal energy

Knowns Unknowns
m = 0.057 kg Ð⇀vi
d = 0.066m Ð⇀vf
tframe = 1

240
s Ð⇀a

t < 1
120

s
Ð⇀
F ’s

y0 = 0.11 m E’s & U ’s
y1 = 0.06 m Ð⇀

∆p

y2 = 0.02 m
y3 = 0.05 m
y4 = 0.08 m

t is used for the duration of the collision. The
different values for y of the center of the ball have
been estimated from the images and the diameter
of the ball. There is not significant motion in the
x̂ direction, so we will restrict our analysis to the ŷ
direction.

Ð⇀vi =
y1 − y0
tframe

= (0.06 − 0.11)m ŷ
1

240
s

= −12m/s ŷ

Ð⇀vf =
y4 − y3
tframe

= (0.08 − 0.05)m ŷ
1

240
s

= +7.2m/s ŷ

ÐÐ⇀aavg =
Ð⇀
∆v

∆t
= (+7.2 − (−12)) m/s ŷ

3 ⋅ 1
240

s
= 1540m/s2 ŷ
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The ball must be pressing down very hard on the
concrete at that time, so there must also be a cor-
respondingly large normal force pushing up on the
ball from the concrete. This is what is able to
change the direction of motion (and therefore also
the momentum) of the ball.

What about the energy during that center frame?
The force from the ground is external to the system
we are considering, which is the ball. But the nor-
mal force does no work on the ball because work is
done by a force acting over a distance moved, and
the position of the concrete doesn’t change at all.

Before and after the center frame, the ball clearly
has kinetic energy. But in the center frame the
ball does not. Also before and after the center
frame the ball has more gravitational potential en-
ergy than in the center frame.

In all of our previous examples, when kinetic
and gravitational potential energy were reduced it
meant that the energy was converted to thermal
energy. And that is partly true here as well. In
the last frame the ball apparently has less kinetic
energy and less gravitational potential energy than
in the first frame. So some was lost to thermal
energy. But not all!

The rest of the energy in the center frame was
stored as spring (sometimes called elastic) potential
energy in the ball. Like a compressed spring, a
compressed ball also stores spring potential energy.

Before Center After
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4
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Figure 5.10: Energy bar graph for the collision.
Initial thermal energy is taken to be zero.
Gravitational potential energy is not zero, but is
so small that it looks like zero compared to the
heights of the other bars. [1]

The series of images provides a good estimate of
all types of energy before and after the collision.
During the collision, in the center frame, it is clear
that kinetic and potential energy should both be
at or near zero. But it is not clear for the cen-
ter frame how the energy should be split between
spring and thermal. For this bar graph it has been
assumed that the thermal energy for the center
frame is roughly half of the thermal energy that
is present after the collision.

The time used above for the calculation of acceler-
ation was three frames because vi was calculated
between frames 0 & 1 and vf was calculated be-
tween frames 3 & 4, so three frames later. The
acceleration found is so much larger than the ac-
celeration due to gravity that we can safely ignore
the effects of gravity, so in fact nearly all of the
acceleration occurs between frames 2 & 4. The
maximum acceleration is given by

ÐÐ⇀amax ≥
Ð⇀
∆v

∆t
= (+7.2 − (−12)) m/s ŷ

2 ⋅ 1
240

s
= 2300m/s2 ŷ

Now we can find the maximum force during the
collision:

ÐÐÐÐÐ⇀
Fnet,max =m ⋅ÐÐ⇀amax ≥ 131 N ŷ

The initial and final kinetic energy is given by:

Ek,i =
1

2
m ⋅ v2i = 4.1 J

Ek,f =
1

2
m ⋅ v2f = 1.5 J

The gravitational potential energy when the ball is
at the highest point in these frames can be found
using Ug =m ⋅ g ⋅ y:

Ug,max =m ⋅ g ⋅ y0 = 0.06 J

Again with gravity, its contribution to energy is so
small compared to the other types of energy that
it can safely be ignored in this scenario.
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5.4 Pushing a Barrel

Words

A group of sailors in Figure 5.11 is attempting to
slide a barrel across the deck of an aircraft carrier
using water from a hose.

If the force that the water applies to the initially
motionless 180 kg barrel starts at zero and slowly
increases, the barrel remains in place until the ap-
plied force reaches 1200N, at which point it begins
to slide with an acceleration of 3m/s2.

Find the force of friction between the barrel and
the deck of the aircraft carrier over the time that
the sailors are spraying water at it.

Before the water is sprayed at the barrel, the barrel
is motionless. Since the barrel is motionless, we
know that the net force on it has to be zero, so the
normal force exactly balances the force of gravity
in the vertical direction. In the horizontal direction
the forces are also balanced, and there is no applied
force so the force of friction at that time is zero.

That sounds wrong, because if you were to push
on the barrel the friction would probably be strong
enough to prevent you from moving it. But the
key here is that phrase, if you were to push. If you
push to the left, friction will push to the right. If
you push to the right, friction will push to the left.
Friction will do whatever it has to do to keep the
barrel in place. If nothing else tries to push the
barrel, friction does nothing!

Graphics

Figure 5.11: Sailors trying to move a barrel using
water from a fire hose.[26]

Fn Fg

barrel

Figure 5.12: FBD of the stationary barrel with no
applied force from the water.[1]

Numbers

Knowns Unknowns
m =180 kg Ð⇀

Ff

g = 9.8m/s2

0 ≤ Fx,applied ≤ 1200 N
Ð⇀af = 3m/s2 x̂
Ð⇀a = 0 when Fx,applied < 1200 N

There are two types of frictional force, “static”
(
ÐÐ⇀
Ff,s) when the objects are not moving with re-

spect to each other and “kinetic” (ÐÐ⇀Ff,k) when they
are sliding against each other.

The magnitude of the maximum static frictional
force between two objects is…

Ff,s,max = µs ⋅ Fn (5.4)

…where µs is the coefficient of static friction and
Fn is the magnitude of the normal force. “µ” is
the lowercase Greek letter “mu.”

The magnitude of the kinetic frictional force be-
tween two objects is…

Ff,k = µk ⋅ Fn (5.5)

…where µk is the coefficient of kinetic friction and
Fn is the magnitude of the normal force.
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When the water is sprayed at the barrel, it applies
a force to the right. As this applied force increases,
the frictional force increases along with it, prevent-
ing the barrel from moving…until the force from the
water reaches 1200 N. Then something changes.
The friction is no longer strong enough to hold
the barrel in place–we have found the maximum
“static” frictional force between the barrel and the
deck.

Static frictional force is present when two objects
are not moving with respect to each other. Once
they start moving, it is “kinetic” frictional force
that takes over. Unlike static frictional force, the
magnitude of the kinetic frictional force does not
depend upon any other applied forces. Kinetic
frictional force is always less than or equal to the
maximum static frictional force–typically it is much
lower.

Since this situation is on an aircraft carrier, we can
also consider the situation where the deck is ris-
ing and falling. If the deck is accelerating down-
ward, the normal force will be smaller than the force
of gravity; in other words, the “apparent weight”
(the normal force required to keep the barrel on
the deck) will be smaller. This reduces the force
of friction between the surfaces, making the barrel
easier to move. On the other hand, if the deck
is accelerating upward the apparent weight of the
barrel will be larger, increasing the frictional force
and making it more difficult to move.

Fn

Fapplied

Ff

Fg

barrel

Figure 5.13: FBD of the stationary barrel with
600 N of applied force.[1]

Fn

Fapplied

Ff

Fg

barrel

Figure 5.14: FBD of the moving barrel with 1200
N of applied force.[1]
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Figure 5.15: Force of friction as a function of net
force from other sources parallel to a surface.[1]

In this physical scenario, the magnitude of the nor-
mal force is the same as the magnitude of the force
of gravity and the maximum static frictional force
is 1200N, because when the applied force reaches
this value the barrel begins to slide. Using Equa-
tion 5.4 we can find µs:

µs =
Ff,s,max

Fn
= 1200 N

(180 kg) ⋅ (9.8m/s2)
= 0.68

To find µk, we need to know Ff,k, which we can
find by applying Newton’s Second Law to Figure
5.14.

Fnet,x = Fapplied − Ff,k =m ⋅ ax

Solving for Ff,k gives 660 N. Then, using Equation
5.5…

µk =
Ff,k

Fn
= 660 N

(180 kg) ⋅ (9.8m/s2)
= 0.37

Notice that there are no units on these coefficients,
and that µk is considerably smaller than µs, which
is typical. Tables of µk & µs for various combi-
nations of surfaces can be found by searching the
internet for a “table of coefficients of friction.”
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5.5 Sledding at White Sands

Words

At White Sands National Monument in New Mex-
ico, USA, the sand is slippery enough that children
can slide down the sand dunes on plastic sleds.
If the angle of the slope is less than 35○ from the
horizontal, a 25 kg child cannot slide down. But
at 35○ from the horizontal the child can slide down
with an acceleration of 2m/s2.

What are the static coefficient of friction and the
kinetic coefficient of friction for the surface be-
tween the sled and the sand? What is the final
speed of the child upon reaching the bottom of
a 2.5-m-long sand dune if they started at the top
with zero speed? What else can we find for this
physical scenario?

Coefficients of friction are ratios of the frictional
force to the normal force between two surfaces.
Frictional force is not dependent upon the surface
area. That is important in this example, because
the curved bottoms of the sleds make it difficult
to determine the surface area of the sled that is in
contact with the sand.

If surface area doesn’t affect friction, why are car
tires and most shoes patterned with treads? The
main function of the treads is to allow the shoe or
the tire to reach the ground firmly if there is water
on the surface. A completely smooth car tire would
have the same amount of friction as a treaded tire
but would easily go out of control, “hydroplaning”
if there were any water on the ground.

Graphics

Figure 5.16: Children sledding at White Sands
National Monument.[27]

Figure 5.17: Sketch of a child sledding down the
sand dune.[1]

Numbers

Assumptions: +∥̂ direction is down the slope; +⊥̂
direction is normal to the slope

Knowns Unknowns
θ = 35○ µs

g = 9.8m/s2 µk

Ð⇀a = 2m/s2 ∥̂ vf

∆x∥ = 2.5m ???
v0 = 0
m = 25 kg

We can use acceleration and displacement to find
vf :

2a∥ ⋅∆x∥ = v2f − v2i

vf =
√
2a∥ ⋅∆x∥ = 3.16m/s

By comparing the figures in this section, it can be
seen that the net force down the slope is given by:

Fnet,∥ = Fg,∥ − Ff =m ⋅ g ⋅ sin θ − Ff

Which Ff we use depends on whether the sled is
moving or not. Since the angle given is just at the
point where the child starts to slide, we can use it
to find Fs,max and if we include the acceleration
given at this angle we can also use it to find Ff,k.
Since a⊥ = 0, we can see from the figures in this
section that Fn = Fg,⊥. This is needed to help us
find Ff,s,max and Ff,k:
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Some shoes, for example golf shoes or crampons
that are used for ice climbing, are built with very
sharp spikes on the bottom. These do not actually
increase the friction with the surface, but increase
traction by breaking into the surface, making ver-
tical surfaces where the golfer or climber can apply
horizontal normal forces instead of relying on fric-
tion.

If we consider the work and energy involved in this
scenario, the child starts out not moving at the top
of a sand dune, so they have gravitational poten-
tial energy but no kinetic energy. As they slide
down they are accelerating in the direction of their
motion, so they are speeding up, increasing their
kinetic energy. They are also losing gravitational
potential energy as they go down.

The frictional force opposes the child’s motion as
they go down. A force opposite the direction of
motion does negative work on the system, so in
this case the friction is doing negative work on
the child, removing kinetic energy. That energy
is transformed into thermal energy.

So at the bottom of the sand dune the child has
kinetic energy but no gravitational potential energy.
And thermal energy has also been released in the
process, warming the sand and the sled.

Frictional force is the first nonconservative force
that we have seen. Frictional force transforms ki-
netic energy into thermal energy, not potential en-
ergy.

Fn

Ff

Fg

child

Figure 5.18: FBD of child on sand dune.[1]
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Figure 5.19: Sum of forces for the child.[1]
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Figure 5.20: Energy bar graph for the child.[1]

Ff,s,max = µs ⋅ Fn = µs ⋅ Fg,⊥ = µs ⋅m ⋅ g ⋅ cos θ

Similarly, Ff,k = µk ⋅m ⋅ g ⋅ cos θ. Fnet,∥ = 0 when
considering µs, so combining the equations above…

0 =m ⋅ g ⋅ sin θ − µs ⋅m ⋅ g cos θ

Solving for µs and using the trigonometric identity
that tan θ = sin θ

cos θ
…

µs = tan θ = 0.70

Following the same steps for µk and using Newton’s
Second Law since the sled is accelerating gives…

m ⋅ a∥ =m ⋅ g ⋅ sin θ − µk ⋅m ⋅ g cos θ

µk =
g ⋅ sin θ − a∥
g ⋅ cos θ

= 0.45

What about energy? Ek,i = 0; no springs, so no
Us; if we set y = 0 at the bottom of the slope
then Ug,f = 0; and we can think of the external
force of friction not as doing work but as a source
of thermal energy. Setting Eth,i = 0, conservation
of energy gives…

�
��*

0
Ek,i +���*

0
Us,i +Ug,i +���*

0
Eth,i

= Ek,f +���*
0

Us,f +���*
0

Ug,f +Eth,f

We can find Ek,f from vf and Ug,i from Figure
5.17 and some trigonometry:

Eth,f = Ug,i −Ek,f

= (m ⋅ g ⋅ (∆x∥ ⋅ sin θ)) − (
1

2
m ⋅ v2f) = 226 J
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5.6 The Truth About Gravity

Words

So far, we have considered gravity to be an accel-
eration with a magnitude of g = 9.8 m/s2, caused
by a force that is always pointing downward.

That is a good model of the force of gravity near
the surface of the earth, which is where most of us
will probably spend most of our lives. So it is an
approximation that works well in many situations
that we will face. But when you leave the surface
of the earth, going up or down, that model doesn’t
work any more.

We will now consider the force of gravity acting on
a 1 kg mass that is placed either at the exact center
of the earth or one earth radius above the surface
of the earth.

At the earth’s surface, the force of gravity from
the earth acting on a 1-kg mass is 9.8 N, pointing
downward. But what if you were at the center
of the earth? There is no longer a “downward”
direction! Imagine the earth being two pieces, the
Southern and Northern hemispheres. At the center
of the earth, the gravitational force caused by the
Southern hemisphere would pull the mass toward
the South pole, but the Northern hemisphere would
pull with an equal but opposite force toward the
North pole. These forces cancel, so we can use
the symmetry of the situation to show that the
earth’s gravitational force acting on a mass at the
center of the earth is zero. Symmetry arguments
like this often provide helpful insights into physical
situations.

Graphics

Figure 5.21: Cutaway of the earth, with a 1 kg
mass shown at three different positions.[28]
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Figure 5.22: Magnitude of gravitational force
between the earth and a 1 kg mass, as a function
of distance.[1]

Numbers

Knowns Unknowns
m = 1 kg

Ð⇀
Fg at position r0

r0 = 0
Ð⇀
Fg at position Ð⇀r1

r1 = 2 rearth

In the table above, radii “r” are measured from the
center of the earth to the center of the 1 kg mass.
The +r̂ direction is directly away from the center
of the earth.

For any location other than the surface of the earth,
the mathematical model Ð⇀Fg = −m ⋅ g ŷ does not
work well. Instead, we need to use Newton’s Law
of Universal Gravitation:

Fg =
G ⋅m1 ⋅m2

r2
(5.6)

…where G is the Universal gravitation constant 6.67×
10−11 N⋅m2

kg2 , m1 & m2 are the masses of two spher-
ical objects between which the force is acting, and
r is the distance between the centers of the two
objects. Gravitational force is always attractive, so
the force on each object is directed toward the other
object. We can use Equation 5.6 to find the magni-
tude of the force when the 1 kg mass is one radius
above the surface of the earth, so at a distance of
two earth radii from the center of the earth. An
internet search can be used to find that the radius
of the earth is 6.37 × 106 m and the mass of the
earth is 5.97 × 1024 kg.
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As we move from the center of the earth to the
surface of the earth, the force of gravity on our
1 kg mass increases smoothly, reaching a force of
9.8 N at the surface of the earth.

Above the surface, gravity follows an “inverse
square law,” meaning that the strength of the force
is inversely proportional to the square of the dis-
tance from the earth’s center. At one earth radius
above the surface of the earth, we are two earth
radii from the center of the earth. Our distance
has doubled, so the force of gravity is reduced by a
factor of four ( 1

22
).

What about gravitational potential energy? Work
is required to lift a 1 kg mass up away from the
center of the earth, regardless of the distance from
the center of the earth. So gravitational potential
energy is at a minimum at the center of the earth
and increases as we move away from the center.

These descriptions are valid for anything that has
mass; the gravitational force caused by anything is
proportional to its mass.

The more refined model of gravity in this section is
consistent with 19th century understanding. But
in the 20th century, gravity began to be under-
stood as a curvature of space-time. And in the
21st century perhaps quantum gravity or a better
understanding of “dark matter” and “dark energy”
will give us an entirely new and better model for
gravity. The models in physics and all sciences are
constantly growing and evolving as we grow in our
understanding of the universe.
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Figure 5.23: Gravitational potential energy of the
earth and a 1 kg mass, as a function of
distance.[1]
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Figure 5.24: Magnitude of gravitational force
between the earth and a 1 kg mass, as a function
of distance, including when the mass is inside the
earth.[1]

Fg =
(6.67 × 10−11 N⋅m2

kg2 ) (5.97 × 1024 kg) (1kg)

(2 ⋅ 6.37 × 106m)2

Ð⇀
Fg = −2.45 N r̂

Let’s try Equation 5.6 again to find the magnitude
of the force at the center of the earth.

Fg =
(6.67 × 10−11 N⋅m2

kg2 ) (5.97 × 1024 kg) (1kg)

(0m)2

Fg =∞N

An infinitely large force! That cannot be correct.
This model only works outside of the mass distribu-
tion of the objects themselves, so not, for example,
inside the earth.

Along with this new model of gravitational force,
we have a new expression for gravitational potential
energy, which is also only valid outside of the mass
distributions of the objects themselves:

Ug =
−G ⋅m1 ⋅m2

r
(5.7)

Notice that with this expression we no longer have
the option of choosing our height where Ug = 0.
Instead, Ug = 0 at r = ∞, and Ug is negative ev-
erywhere else.

Inside a uniform mass distribution, the magnitude
of the force is smaller than the value calculated
from Equation 5.6, increasing linearly with radial
distance. The gravitational potential energy inside
a mass distribution is higher than the value calcu-
lated from Equation 5.7.
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5.7 Summary

Chapter summaries in this book are ordered by concept, not necessarily in the order in which they are
presented in the chapter. Mathematical models are grouped together at the end of each summary. See the
appendices for the meanings of all symbols used in this book.

General

• The stiffness of a spring is defined by its spring constant k, which always has a positive value and is
measured in units of newtons per meter.

Forces

• A pulley can be used to change the direction of the tension in a rope.

• “Mechanical advantage” is the ratio of the output force to the input force for any machine.

• “Conservative” forces are those that involve energy transformations with kinetic and potential energy.

• “Nonconservative forces” are those that involve energy transformations that include forms of energy
other than kinetic and potential energy.

• Ideal springs follow Hooke’s Law, where force is proportional to the amount of extension or compres-
sion.

• The force of friction between two surfaces depends upon the surfaces themselves and the normal force
that the surfaces exert on each other.

• If two surfaces are motionless with respect to each other, the static force of friction between them
will be exactly enough to cancel out all other forces in the direction parallel to the surfaces, unless
the sum of all of the other forces is larger than the maximum static force of friction, in which case
the surfaces begin to move with respect to each other.

• If two surfaces are moving with respect to each other, the kinetic force of friction between them will
be in the direction opposing the motion.

• If the floor on which an object sits is accelerating upward, the apparent weight of the object as
measured by the normal force is larger than if the floor were stationary or moving at constant velocity.

• If the floor on which an object sits is accelerating downward, the apparent weight of the object as
measured by the normal force is smaller than if the floor were stationary or moving at constant velocity.

• Frictional force does not depend upon the contact area of the surfaces.

• The gravitational force between two objects is proportional to the masses of the objects and inversely
proportional to the square of the distance between their centers.

• Gravitational force is always attractive.

• Gravitational force drops to zero as the radius gets smaller if one object is inside the mass distribution
of the other object.

Motion

• A pulley can be used to change the direction of the motion of a rope.

• A position vector can be defined in a radial direction, along a radius from a center point. The positive
direction is away from the center point.



Energy

• Stretched or compressed springs store spring (also called elastic) potential energy.

• Spring potential energy is a form of mechanical energy.

• Deformed objects can store spring potential energy.

• Gravitational potential energy of two objects increases as the distance between the objects increases.

Mathematical Models

equation restrictions on the validity of the equation

MA = Foutput

Finput
(5.1) -none-

Ð⇀
Fs = −ks ⋅

Ð⇀
∆x (5.2)

For objects that obey Hooke’s Law
“Hooke’s Law”

Us = 1
2
⋅ ks ⋅∆x2 (5.3) For objects that obey Hooke’s Law

Ff,s,max = µs ⋅ Fn (5.4) -none-

Ff,k = µk ⋅ Fn (5.5) -none-

Fg = G⋅m1⋅m2

r2
(5.6)

Outside of the mass distribution of spherical objects.
“Newton’s Law of Universal Gravitation”

Ug = −G⋅m1⋅m2

r
(5.7) Outside of the mass distribution of spherical objects.



5.8 Questions

Questions are ordered according to Bloom’s Taxonomy, progressing from regurgitating information (Level
1) to synthesizing new information with previous knowledge to create something new (Level 6). The bold
letters at the beginning of each question indicate whether the question involves Words [W], Graphics [G],
and/or Numbers [N]. See the appendices for conversion factors.

Level 1 - Remember

5.1 [W] Mechanical advantage is the ratio of output to input .

5.2 [W] The kinetic force of friction is only relevant if the two surfaces are relative to
one another.

5.3 [W] In what direction does the kinetic force of friction act?

5.4 [W] The static force of friction is only relevant if the two surfaces are relative to
one another.

5.5 [W] In what direction does the static force of friction act?

5.6 [W & N] Add labels to each equation in the “Mathematical Models” section of the summary that
tell what the symbol to the left of the = sign represents.

Level 2 - Understand

5.7 [W & N] A certain ideal (perfect) machine has a mechanical advantage of 10. A force of 1 000 N is
supplied at the input of the machine. How large is the output force?

5.8 [W & N] A certain ideal (perfect) machine has a mechanical advantage of 10. 1 000 J of energy is
supplied at the input of the machine. How much is the output energy?

5.9 [G] Draw free body diagrams for the tennis ball in the left, center, and right frames of Figure 5.9.

5.10 [W, G, & N] Find the momentum of the child at the top and bottom of the sand dune in Section 5.5.
Momentum is conserved for an isolated system, so if the child’s momentum changed, what caused
that change?

Level 3 - Apply

5.11 [W, G, & N] The tension force in rope 2 was never found in Section 5.1. Find the amount of tension.
Include a free-body diagram along with your reasoning.

5.12 [G & N] The amount of potential energy stored in the spring in Section 5.2 is never actually calculated.
How much is it?

5.13 [W & N] Find the change in the momentum of the tennis ball during the collision in Section 5.3.
Use the change in momentum to find the force applied to the tennis ball during the collision. Does
it agree with the ÐÐÐÐÐ⇀Fnet,max that is found in the text? Explain why or why not.

5.14 [W & N] If the mass of the barrel in Section 5.4 were doubled, what effect would that have on the
maximum static frictional force and the kinetic frictional force?

5.15 [W, G, & N] Now that we have Newton’s Universal Law of Gravitation, does that mean that we can
no longer use 9.8m/s2 as the acceleration due to gravity at the earth’s surface? Explain why or why
not. You will need to look up information about the Earth’s mass and radius to answer this question.



Level 4 - Analyze

5.16 [W, G, & N] How much force does the pulley system in Section 5.1 apply to the ceiling?

5.17 [W, G, & N] If the deck of the ship in Section 5.4 remained level but started accelerating downward
at 1 m/s2 because of stormy seas…

(a) …would the horizontal acceleration of the barrel increase, decrease, or remain the same if it had
already started moving? Explain your reasoning.

(b) …would the static force of friction increase, decrease, or remain the same if the barrel was not
yet moving and there was no applied force in the horizontal direction?Explain your reasoning.

(c) …would the static force of friction increase, decrease, or remain the same if the barrel was not
yet moving and the applied force in the horizontal direction was 200 N? Explain your reasoning.

(d) …would the horizontal motion of the barrel change if it was not yet moving and the applied force
in the horizontal direction was 1100 N? Explain your reasoning.

5.18 [W & N] Given the physical scenario described in Section 5.5, is there an angle at which a child
would go down the slope at constant speed if they were given an initial push to start them moving?
Explain why or why not. If it is possible, find the angle.

Level 5 - Evaluate

5.19 [W, G, & N] How would the values of each of the following change (increase, decrease, or stay the
same) in Section 5.1 if the friction and the mass of the pulleys were not negligible? Assume that all
of the “knowns” keep their same values. Explain your reasoning.

(a) Ft,3

(b) Fapplied

(c) Plift

(d) Papplied

(e) MA

5.20 [G & N] If the spring constant were doubled and the same mass was hung from the scale in Section 5.2,
how would that affect the amount of energy stored in the spring? Explain your reasoning.

5.21 [G & N] If the mass were doubled and the spring constant was kept the same in Section 5.2, how
would that affect the amount of energy stored in the spring? Explain your reasoning.

5.22 [W, G, & N] The height of the bars in the “Center” position of Figure 5.10 are not well defined
just from examining Figure 5.9. What are the maximum and minimum possible heights for the bars
representing spring potential energy and thermal energy?

5.23 [W & N] In Section 5.5 the coefficients of friction are found. Given those coefficients of friction, if
the child’s mass were doubled, how would that affect the angle at which the maximum static frictional
force can no longer keep the child from sliding down the sand dune? Explain your reasoning.

5.24 [W & N] In Section 5.5 the coefficients of friction are found. Given those coefficients of friction, if
the child’s mass were doubled, how would that affect the acceleration of the child as they slid down
the 35○ slope? Explain your reasoning.

5.25 [N] Up until now we have been approximating the force of gravity on an object at the surface of the
earth using m ⋅ g. Now that we know a better way to describe gravity, what percentage difference
is there in the actual force of gravity between the highest point on the earth’s surface (the peak of
Mount Everest) and the lowest known point on the earth’s surface (Challenger Deep, in the Pacific
Ocean)? Be sure to list any assumptions that you are making.



Level 6 - Create

5.26 [W, G, & N] At the beginning of Chapter 1 in Figure 1.1 was a template for a concept map. Add
the main ideas from this chapter to the concept map that you began for the question at the end of
Chapter 1.

5.27 [W, G, & N] Imagine you are writing a test question related to this chapter. Think of your own
example of a situation that you can analyze using the concepts, graphics, and mathematical analyses
described in this chapter. Describe the situation, and use the tools from this chapter to analyze the
situation as completely as you can, including motion, forces, energy, and momentum.

5.28 [W, G, & N] Think about possible misconceptions about the material in this chapter. Write a
question and an incorrect solution to it that demonstrates a student making such a conceptual error.
This cannot be a simple misuse of a vocabulary word, a unit error, or a mathematical error like
making an addition error or multiplying when addition was needed, unless the error is rooted in a real
misunderstanding about the physics behind the calculation or the misuse of a word. After you have
written the question and incorrect solution, explain what is wrong with the student’s solution, and
write a correct solution to the problem. Note: You may use a question from this chapter that you
got wrong the first time, and explain the initial error in your thinking and how you corrected it.
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Chapter 6

Curving Paths

Figure 6.1: A fire poi dance. The flaming ball on the
near side of the dancer traces out a circular path,
while the ball on the far side of the dancer follows a
more complicated path.[29]

We have already learned that if an object experi-
ences an unbalanced force in the direction in which
it is already moving, the force does positive work
on the object, increasing its kinetic energy, its mo-
mentum, and also its speed. Conversely, if an ob-
ject experiences an unbalanced force opposite the
direction in which it is already moving, the force
does negative work on the object, decreasing its
kinetic energy, its momentum, and also its speed.

Now it is time to start looking at unbalanced forces
that are pointing in directions that are not parallel
to the motion of an object. When that happens,
the object follows a curved path.

Looking at the image of the fire dancer, try to
imagine the forces that are involved. The dancer
is holding two flaming balls that are hanging from
chains. She spins them around, making intricate
patterns in the air. The flaming balls experience
forces due to both gravity and the tension in the
chains. How do those combined forces make the
balls move in such complicated patterns?

What is happening to the momentum of the balls
as they follow these curved paths?



6.1 Cliff Diving

Words

Figure 6.2 shows a diver jumping horizontally off
of the edge of a cliff. After leaving the cliff, the
diver’s body is in free fall, affected only by the force
of gravity. Because of the initial horizontal veloc-
ity and the vertical acceleration, the diver’s body
follows a curved path.

If the camera took four images per second and the
diver jumped horizontally at 3 m/s, for how much
time was the diver in the air before hitting the wa-
ter, what is the height of the cliff, at what speed did
the diver enter the water, and what was the hori-
zontal displacement of the diver over that time?

The key to understanding this situation is realizing
that the horizontal direction is independent of the
vertical direction. This idea was explored in Chap-
ter 4, where the focus was on velocity, momentum,
and forces. The same principle applies to position
as well.

The force of gravity pulls the diver down into the
water in exactly the same amount of time as if she
had fallen straight down into the water from the
same height. This is perhaps most easily under-
stood by thinking of it in terms of frames of refer-
ence. If you are standing on a motionless train and
you hold a ball straight out and drop it to the floor,
the ball will be in the air for a specific amount of
time before hitting the floor.

Graphics

Figure 6.2: A cliff diver jumps horizontally off of a
cliff. The individual images of the diver are at
equal time intervals.[30]

Numbers

Assumptions: +x̂ is to the right; +ŷ is upward;
air resistance is negligible

Knowns Unknowns
Ð⇀v0 = −3m/s x̂ ttot

timage = 0.25 s hcliff

g = 9.8m/s2 ∆x

vf

If we use the image where the diver has one foot
on the cliff as t = 0, and subsequent images are
at 0.25-s intervals, then the splash into the water
occurs at

ttot = 6 ⋅ timage = 1.5 s

To find the height of the cliff, we can separate the
x̂ & ŷ components of position:

x = x0 + v0x ⋅ t +
1

2
ax ⋅ t2

y = y0 + v0y ⋅ t +
1

2
ay ⋅ t2

In free-fall, the only force acting on an object is
gravity, so as long as the object is near the sur-
face of the earth Ð⇀a = −g ŷ. So the horizontal and
vertical position of an object in free-fall are…

x = x0 + v0x ⋅ t (6.1)

and
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If you are on the same train, holding the same ball
and dropping it in the same way, but the train is
moving at a constant velocity, from your reference
frame the ball will behave in exactly the same way.
And it will hit the floor in exactly the same amount
of time.

In the reference frame of somebody watching the
train go by, the ball starts in your hand not at rest
but moving with the same horizontal velocity as the
train. When you drop the ball, it will continue to
move horizontally along with the train, but it will
drop vertically. Each person sees the ball following
a different path in their reference frame, but both
see the ball in the air for the same amount of time.

The horizontal displacement that the ball travels
while falling in the reference frame of the person
on the train is zero, because the horizontal velocity
is zero in that reference frame. But in the reference
frame of the person watching the train go by, the
horizontal displacement of the ball would be the
velocity of the train multiplied by the time that the
ball is in the air, since velocity is displacement over
time.

In Figure 6.3, the horizontal spacing of the images
are almost equally spaced–the slight decrease in
spacing on the left is most likely due to the an-
gle of the camera. The vertical spacing, on the
other hand, increases with each successive image.
This shows acceleration in the vertical direction,
due to the force of gravity. It is also clear from
the lengths of the arrows that the diver’s speed is
increasing during the fall.

01
2

3

4

5

6

Figure 6.3: 2-D motion map of the diver[31]

y = y0 + v0y ⋅ t −
1

2
g ⋅ t2 (6.2)

Note that the only connection between the x̂ &
ŷ directions is the time. Often questions about
two-dimensional physical scenarios can be answered
by using information known about one direction to
solve for time, and then using time to solve for
information about the other direction. In this case
we are given the time and can use it to solve for
information about both directions.

The height of the cliff is the opposite of the dis-
placement in the y direction, y0 −y, since the diver
starts at the top and ends at the bottom. So…

hcliff =
1

2
g ⋅ t2tot −����:0

v0y ⋅ ttot = 11m

The diver’s horizontal displacement comes from Equa-
tion 6.1:

∆x = v0x ⋅ t = −4.5m

Now we can find the speed of the diver by cal-
culating vx,f and vy,f and using the Pythagorean
theorem. There is no horizontal acceleration, so
vx,f = v0x. In the vertical direction…

vf,y = v0y + ay ⋅ ttot = 0 − g ⋅ ttot = −14.7m/s

vf =
√

v2f,x + v2f,y = 15m/s
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6.2 Basketball Bounce

Words

Figure 6.4 shows a ball bouncing, with images cap-
tured using a stroboscopic light source that flashed
25 times per second. We will assume that the pho-
tograph was taken somewhere near the surface of
the earth.

We will analyze the photograph using all of our
tools to see what we can learn just from the images.

This photograph looks like a 2-D map of the mo-
tion of the ball, but it doesn’t contain arrows like
a normal motion map. Can we determine which
direction the ball is moving? The biggest indicator
is the height of the peaks. The first peak is much
higher than the second, and the speed of the ball
when at the peaks looks like it is probably about
the same for each peak.

So the ball has more mechanical energy at the top
of the left peak than it has at the top of the right
peak. Most likely some of the initial energy was
transformed to thermal energy during an inelastic
collision with the floor, so the peak on the left must
be the first one, and the ball is moving to the right.

The image of the ball on the far right is consid-
erably smaller than the image of the ball on the
left, so it must also be moving away from the cam-
era. That means any measurements of angles or
distances will not be exact.

Graphics

Figure 6.4: This single photograph of a bouncing
ball was taken using a stroboscopic light source
that flashed 25 times per second .[32]

Figure 6.5: The same photograph as above, with
the images numbered for reference.[32]

Numbers

Assumptions: θ is measured up from the horizon-
tal direction; gravity near the surface of the earth;
air resistance is negligible

Knowns Unknowns
timage = 0.04 s ???
g = 9.8m/s2

There are 15 spaces between the images of the ball
for the left bounce so…

tleft = 15 ⋅ timage = 0.6 s

Similarly, tright = 0.52 s. These “times of flight”
can be used to find initial and final vertical ve-
locities and heights. Measuring the angles gives
information about the horizontal direction. In this
situation, when the initial and final heights are the
same and the object is in free-fall, there are three
“equations of projectile motion” that can be used.
They are derived from the equations of motion that
we have already been using.

tflight =
2 v0 ⋅ sin θ

g

hmax =
v20 ⋅ sin

2 θ

g

R = v20 ⋅ sin (2θ)
g
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The path of motion that the ball follows is in the
shape of a parabola. This is the expected shape
whenever an object is in free-fall near the surface
of the earth. Other names for this type of motion
are “projectile motion” and “ballistic motion.”

If we neglect air resistance, which is typically very
small at low speeds, then the only force that acts on
the ball while it is in the air is the force of gravity,
acting downward. When the ball is moving upward,
gravity is doing negative work on the ball, slowing it
down. When the ball is moving downward, gravity
is doing positive work on the ball, speeding it up.

When the ball hits the floor, the ball applies a large
normal force downward onto the floor and the floor
pushes up on the ball with an equally large normal
force. During the collision with the floor, the ver-
tical part of the velocity of the ball changes drasti-
cally, from a large downward speed to a large up-
ward speed. Looking at the horizontal direction,
however, shows that the horizontal velocity did not
change much. The ball continues to move to the
right at a fairly uniform rate for the whole time that
it was being imaged.

Fg

ball

Figure 6.6: FBD of the ball for any time when it is
in the air, images 2-15 and 17-28 in Figure 6.5.[1]

Fg

Fn

ball

Figure 6.7: FBD of the ball when it is in contact
with the ground, images 16 & 29 in Figure 6.5.
Lengths of the arrows are not exact, but are
intended to signify that Fg is the same as in
Figure 6.6 and that Fn > Fg.[1]

…where θ is the angle between v0 and the horizontal
direction, approximately 70○ in this case for both
bounces; tflight is the total time in free-fall; hmax

is the vertical distance from the initial position to
the peak; and R is the horizontal range. It is im-
portant to remember that these are not “magic”
equations that always give correct answers when
you don’t know what to do. They are specific to the
situation of free-fall near the surface of the earth
when initial height is equal to final height. They
will not work in any other situation.

Using these equations, we find:

Left Bounce Right Bounce

v0 3.1m/s 2.7m/s

hmax 0.88m 0.66m

R 0.64m 0.48m

Some of these numbers are surprising, if you know
something about the size of a basketball. The
range for the left bounce is 0.64 m, and appears
in the photograph to be roughly 6 diameters of the
ball, so the ball diameter is between 10 and 11 cm,
half the size of a basketball! In fact, this is not a
real basketball in the photograph, but a child’s toy
ball that is made to look like a basketball.

Since we don’t know anything about the mass of
the toy ball, we cannot calculate force, momentum,
or energy.
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6.3 At the Peak

Words

Let’s take a closer look at what is happening just
at the peak of the flight of the ball from Section
6.2. We know that the path followed by the ball is
parabolic in shape. At the top of the parabola, the
motion of the ball is horizontal.

At every point on the parabola, there is a constant
net force, which is simply the gravitational force,
pointing downward. As a result, at every point on
the parabola the ball has a constant downward ac-
celeration. And since acceleration is a change in
velocity over time, the velocity of the ball is chang-
ing at a constant rate everywhere on the parabola.

The ball is moving upward on the left side of the
peak, and since the acceleration is downward that
means it is slowing down. We can say that the
gravitational force is doing negative work, decreas-
ing the kinetic energy as the ball is moving upward.
The ball is moving downward on the right side of
the peak, and since the acceleration is downward
that means it is speeding up. We can say that the
gravitational force is doing positive work, increasing
the kinetic energy as the ball is moving downward.

When the ball is right at the peak, its velocity is
perpendicular to the net force, so no work is be-
ing done on it, positive or negative. That means
its speed is not changing. But, it is still accelerat-
ing the same as everywhere else, so the velocity is
changing!

Graphics

Figure 6.8: A close-up of the top of the first peak
for the bouncing ball from Section 6.2.[32]
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r

Figure 6.9: At the very peak of the ball’s motion,
the path briefly follows a circular path with radius
of curvature r.[32]

Numbers

Assumptions: gravity near the surface of the earth

Knowns Unknowns
timage = 0.04 s ???
g = 9.8m/s2

The work that is done on the ball at the top of the
parabola is given by:

Wnet = Fnet⋅∆x ⋅ cos θ = Fg ⋅∆x ⋅ cos 90○

cos 90○ = 0, so…
Wnet = 0

…at the top of the parabola where the force is per-
pendicular to the direction of motion. There are no
energy transformations happening at that point, so
the speed v is constant at the top of the parabola.
And yet the acceleration due to gravity is constant
everywhere on the parabolic arc, so Ð⇀v is chang-
ing. The only way to change Ð⇀v while keeping v
constant is to change the direction of Ð⇀v .
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How can the velocity change while the speed stays
the same? Velocity is a vector, which includes
speed and direction. When the net force (and
therefore the acceleration) is perpendicular to the
velocity, it causes a change in direction but not a
change in speed. The path curves along a circu-
lar arc with a radius that is called the “radius of
curvature.”

This perpendicular net force is called the “cen-
tripetal” force, from the Latin words for “toward
the center.” The centripetal force is not a new type
of force; it is simply a name for whatever force is
causing an object to follow a curved path. In the
case of the ball at the top of the arc, the centripetal
force is the force of gravity. In other situations it
could be a tension force, a friction force, a normal
force, a combination of these, or any other type of
applied force.

Imagine now a force that changes direction as the
velocity changes direction. If a constant net force
were kept always perpendicular to the direction of
motion, the object would move in a complete circle.
This is what happens, for example, in an Olympic
hammer throw. The “hammer,” a heavy ball on
the end of a flexible cord, is spun in a circle. The
tension in the cord supplies the centripetal force
radially inward, and the velocity of the ball is in the
“tangential” direction, perpendicular to the radius.

Figure 6.10: An Olympic hammer throw.[34]

r

Fc

p

p
Fc

vT
ac

ac

vT

Figure 6.11: Looking down on the hammer throw.
The ball is following the dotted line
counterclockwise. Ð⇀Fc, Ð⇀ac, Ð⇀p , & Ð⇀v are shown at
various positions.[1]

The radius of curvature r in Figure 6.9 depends on
two things: the acceleration due to gravity and
the horizontal speed at the top. The radius would
increase if gravity were weaker, allowing the ball to
stay up longer, and the radius would also increase
if the speed were higher, allowing the ball to move
farther horizontally in the time needed for gravity
to pull the ball down.

The magnitude of the centripetal acceleration ac,
the tangential (perpendicular to the radius) velocity
vT , and the radius of curvature r are related by:

ac =
v2T
r

(6.3)

In Section 6.2, the speed and initial direction of
the ball were found, which give us the horizontal
velocity using the cosine. The horizontal velocity is
the tangential velocity at the top of the parabola,
so we can use it to find the radius of curvature.

r =
v2T
ac
= (v0 ⋅ cos θ)

2

g
= 0.12m

That is roughly the diameter of the ball, and in
Figure 6.9 we can see that in fact the radius of
curvature is very close to the diameter of the ball.
Making this type of comparison can give us con-
fidence that our work is correct. Using the rela-
tionship between force and acceleration given by
Newton’s Second Law, we could also find the cen-
tripetal force if we knew the mass:

Fc =m ⋅ ac =
m ⋅ v2T

r
(6.4)
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6.4 Earth’s Orbit

Words

The earth orbits the sun at a distance of approxi-
mately 150 million kilometers, and it takes approx-
imately 365 days to make one complete orbit.

Use this information to find the speed of the earth
as it orbits around the sun and also the mass of the
sun and any other information that can be found.

The speed of the earth can be found by considering
that the earth makes one complete circuit around
the sun every year. The speed of the earth is simply
the path length traveled around the circular path
divided by one year.

It seems surprising to think that we would not need
to know the mass of the earth in order to find the
mass of the sun for this question, but the force
of the earth’s gravity gives objects at the earth’s
surface a constant acceleration regardless of their
mass. Just as the mass of the earth is much larger
than the mass of anything on the surface of the
earth, the mass of the sun is much larger than the
mass of the earth. So it should make sense that
the sun’s gravitational force causes a constant ac-
celeration at a given distance, at least as long as
the other object’s mass is much less than the mass
of the sun.

Graphics

r

vT

Fg

Figure 6.12: The earth’s orbit around the sun is
nearly circular.[35]

Note that the earth’s speed is nearly constant as
it orbits the sun; but its velocity, which includes
direction, is always changing. It is more convenient
to use angular velocity when describing a situation
like this, because the earth’s angular velocity, like
its speed, is nearly constant.

Numbers

Assumptions: circular orbit; mearth <<msun

Knowns Unknowns
r = 1.5 × 1011 m vT

torbit = 3.15 × 107 s msun

???

In 365 days, the earth orbits the sun once, a path
length that is the circumference of a circle whose
radius is the distance from the earth to the sun:

sorbit = 2π ⋅ r = 9.4 × 1011 m

To find the tangential speed of the earth in its orbit
we need to consider the path length traveled:

vT =
sorbit
torbit

= 3 × 104 m/s

Now that we know the tangential speed of the
earth, we can use that to determine the centripetal
acceleration, or with mass the centripetal force. At
these distances, we need to use Newton’s Law of
Universal Gravitation. It is this force which is the
centripetal force that keeps the earth in a circular
path, so we can use Equation 6.4 as well.

Fg = Fc

G ⋅msun ⋅mearth

r2
=
mearth ⋅ v2T

r
G ⋅msun

r
= v2T
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While it is interesting to know the tangential speed
of the earth as it goes around the sun, that knowl-
edge doesn’t have a great impact on our daily lives.
The thing that most affects our lives about the or-
bit of the earth around the sun is the passing of the
seasons, which is related to angular position. This
is an example when expressing position in terms of
an angle, and how the angle changes over time, is
more important than expressing position in terms of
distances and how the distance changes over time.

There are also many other situations where angular
changes are more important and easier to think
about than changes in distance. For example, many
vehicles have tachometers that display the angular
speed of the engine measured in rpm (revolutions,
sometimes called rotations, per minute).

When discussing angular motion, the units used for
angles are radians. One radian is the angle created
by an arc whose arc length is equal to the radius of
the circle. So one full circle contains 2π radians.
The angle then becomes a ratio of an arc length
over a radius. Length per length. In other words,
the unit “radian” is in some sense dimensionless.
Expressing angles in radians greatly simplifies prob-
lem solving precisely because of this dimensionless
quality of the angle measurement.

Just as we have learned about position, velocity, ac-
celeration, momentum, etc. in linear form, we will
now start to learn about angular position, angular
velocity, angular acceleration, angular momentum,
etc.

r

s

∆θ

+ŷ

+x̂

Figure 6.13: The angle ∆θ in radians is the ratio
of the arc length s to the radius r.[1]

r

vT

Fg

ω

Figure 6.14: The earth’s speed as it orbits the sun
can be described in terms of angular velocity ω.
“ω” is the lower-case Greek letter “omega.”[35]

msun =
v2T ⋅ r
G
= 2.0 × 1030 kg

It is often useful to describe a system in terms of
angles, so for the earth we could give an angular
velocity around the sun instead of a tangential ve-
locity. The SI unit for angles is the radian [rad],
illustrated in Figure 6.13.

∆θ = s

r
(6.5)

…where s is the arc length and r is the radius of a
circle. θ = 0 is normally at the positive x axis and
the positive θ direction is counter-clockwise.

Similarly, we can define angular velocity ω in terms
of tangential speed and radius:

ω = vT
r

(6.6)

The angular velocity of the earth around the sun
can then be described as:

ωearth =
3 × 104 m/s
1.5 × 1011 m

= 2 × 10−7 rad/s

The SI unit for angular velocity is therefore [rad/s].
We can also find the period T of the earth’s orbit
around the sun, the amount of time for one com-
plete revolution. When ω is constant,

T = 2π

ω
(6.7)

So for the earth, T = 3.14 × 107 s.
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6.5 Puck on a String

Words

For situations where angular velocity is easier to
think about than linear velocity, it would be conve-
nient to also have angular versions of kinetic energy
and momentum, which are strongly connected to
velocity. Take, for example, a 0.2 kg frictionless
puck that is connected by a 1.4-m-long string to a
bolt that is solidly mounted in the floor.

If the puck is moving at constant angular speed
of 4 rad/s in a circle around the bolt, its kinetic
energy, which depends only on mass and speed,
but not on direction, is constant.

We now have two different ways to look at the
motion and the kinetic energy of the puck:

• We can see the puck as a moving object
with a linear (tangential) velocity that is al-
ways changing direction because of the cen-
tripetal acceleration caused by the tension
in the string. In this view, the puck has
the same kind of kinetic energy that we are
used to dealing with, which is usually called
“translational” kinetic energy.

• Or we can see the puck as part of a puck-bolt
system that does not have any linear velocity
(since the bolt is solidly fixed in place), but
that is spinning about an axis at a constant
angular speed. In this view, the puck-bolt
system has rotational kinetic energy, but no
translational kinetic energy.

Graphics

Figure 6.15: A frictionless puck moving in a circle
at constant angular speed.[33]

Figures 6.15 & 6.16 are based on a screenshot from
a YouTube video:
https://youtu.be/mNdLRySeh9o.

Something really interesting happens in the video
at a place where the string falls off of the bolt. The
puck stops moving in a circle with constant angular
velocity, since the source of the centripetal force
has disappeared. With no forces in the horizontal
direction, the puck instead begins to move in a
straight line with constant velocity.

Numbers

Knowns Unknowns
r = 1.4m Ek

ω = 4 rad/s rotational kinetic energy?
m = 0.2 kg angular momentum?
Ff = 0

We can use Ek = 1
2
m ⋅ v2 to find the kinetic energy

of the puck, recognizing that its speed is simply vT .
But we don’t have vT , so we will also need to use
Equation 6.6:

Ek =
1

2
m ⋅ v2T =

1

2
m ⋅ (r ⋅ ω)2

This is referred to as the rotational kinetic energy
Ek,r of a point mass, and the expression is normally
grouped in a slightly different way:

Ek,r =
1

2
(m ⋅ r2) ⋅ ω2

For the puck in this example…

Ek,r =
1

2
(0.2 kg ⋅ (1.4m)2) ⋅ (4 rad/s)2 = 3.14 J

The kinetic energy could also be found for the puck
by finding vT and calculating kinetic energy as we
have done before. Whether we choose to consider
the puck as having only translational kinetic energy
in the tangential direction or only rotational kinetic
energy around the pivot, we will get the same result
for its kinetic energy.
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This type of thinking also works for momentum.

• We can see the puck as a moving object with
a linear momentum that is always changing
direction because of the tension in the string.

• Or we can see the puck as part of a sys-
tem that does not have any linear momen-
tum, but that has constant angular momen-
tum around a pivot point at the location of
the bolt.

Angular momentum, like linear momentum, is con-
served for any isolated system. That is what makes
it such a useful concept. An isolated system, re-
member, is one that does not interact with any-
thing outside of the system.

By watching the video associated with the figures
in this section, we can learn something surprising
about angular momentum: even an object that is
moving in a straight line can have angular momen-
tum! When the string falls off of the bolt, there
is no force applied to the puck, so its angular mo-
mentum can’t change at that time–it has to keep
the same amount of angular momentum that it had
just before the string fell off.

For a pointlike object like this puck, the angular
momentum depends on its mass, angular velocity,
and distance from the pivot; or, if it is moving in
a straight line then it depends on the mass, linear
velocity, and the “lever arm,” which is the perpen-
dicular distance from the pivot to the line along
which it is traveling.

Figure 6.16: When the string falls off of the bolt,
the puck begins to move in a straight line.[33]

pivot

puck going straight

r⊥

v

lever armr

ω

puck curving

Figure 6.17: Motion of the puck, showing a lever
arm, r⊥, for an object moving in a direction that
is not aligned with a pivot point.[1]

Angular momentum L is conserved for an isolated
system, so…

Lf = Li (6.8)

For an object moving in a straight line that is not
aligned with a pivot point, as shown when the puck
is going straight in Figure 6.17, L is given by…

L =m ⋅ v ⋅ r⊥ (6.9)

…where r⊥ is the lever arm.

From Figure 6.17, we can see that in the case of a
small object traveling on a circular path, the lever
arm is simply r and the speed is simply vT . So
for that situation, angular momentum can be de-
scribed in angular terms using…

L =m ⋅ vT ⋅ r
=m ⋅ (ω ⋅ r) ⋅ r
= (m ⋅ r2) ⋅ ω

Notice that (m ⋅ r2) has made another appearance.
And as we explore rotation we will see more of this
same type of grouping of mass and radius. That
is why they are usually grouped together in expres-
sions for rotational motion.

Now we can find the angular momentum of the
puck:

L = (m ⋅ r2) ⋅ ω

= (0.2 kg ⋅ (1.4m)2) ⋅ 4 rad/s

= 15.7 kg ⋅m2/s
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6.6 Summary

Chapter summaries in this book are ordered by concept, not necessarily in the order in which they are
presented in the chapter. Mathematical models are grouped together at the end of each summary. See the
appendices for the meanings of all symbols used in this book.

General

• When an object is following a curved path, the radial direction is in the direction of the radius of
curvature and the tangential direction is perpendicular to the radius of curvature.

• The time needed for an object to move in a complete circle is called the period.

• The positive direction of angular quantities is defined as the counter-clockwise direction.

Forces

• A net force applied perpendicular to an object’s velocity causes the object to change direction but
maintain constant speed.

• Centripetal force is always directed in the radial direction toward the center of the circular path.

• Centripetal force is not a new kind of force, but is used to describe the force that is causing circular
motion.

Motion

• Motion in the horizontal direction and motion in the vertical direction are independent of each other.
The thing that connects them is time.

• An object that is in free-fall near the surface of the earth follows a path that is shaped like a parabola.

• Free-fall motion is sometimes called projectile motion or ballistic motion.

• When an object’s acceleration is perpendicular to its velocity, the direction of the object’s motion
changes. It follows a path described by an arc of a circle with a “radius of curvature” r.

• Centripetal acceleration is always directed in, toward the center of circular path.

• Speed is path length traveled over time.

• The SI unit for angle is the radian [rad]. Zero radians is usually at the positive x axis.

• The SI unit for angular velocity is [rad/s].

• A “lever arm” is the perpendicular distance from a straight line to a pivot point.

Momentum

• Angular momentum is conserved for any isolated system.

• The angular momentum of an object moving in a straight line depends on its mass, linear velocity,
and lever arm.

• The SI unit for angular momentum is [kg ⋅m/s].



Energy

• Objects can have translational kinetic energy, rotational kinetic energy, or both.

135



Mathematical Models

equation restrictions on the validity of the equation

x = x0 + v0x ⋅ t (6.1) For objects in free-fall near the surface of the earth

y = y0 + v0y ⋅ t − 1
2
g ⋅ t2 (6.2) For objects in free-fall near the surface of the earth

ac = v2
T

r
(6.3) -none-

Fc =m ⋅ ac = m⋅v2
T

r
(6.4) -none-

∆θ = s
r

(6.5) -none-

ω = vT

r
(6.6) -none-

T = 2π
ω

(6.7) When ω is constant

Lf = Li (6.8) For an isolated system

L =m ⋅ v ⋅ r⊥ (6.9) For pointlike objects with linear velocity



6.7 Questions

Questions are ordered according to Bloom’s Taxonomy, progressing from regurgitating information (Level
1) to synthesizing new information with previous knowledge to create something new (Level 6). The bold
letters at the beginning of each question indicate whether the question involves Words [W], Graphics [G],
and/or Numbers [N]. See the appendices for conversion factors.

Level 1 - Remember

6.1 [W] What is the difference between free-fall, projectile motion, and ballistic motion?

6.2 [W & N] Add labels to each equation in the “Mathematical Models” section of the summary that
tell what the symbol to the left of the = sign represents.

Level 2 - Understand

6.3 [W] Explain how the photograph in Figure 6.5 shows that the normal force is much larger than the
gravitational force when the ball is touching the ground in image 16.

6.4 [W] Describe how the momentum of the ball in Figure 6.5 changes over the course of time during
which it is imaged.

6.5 [W & G] What type of force creates the centripetal force that keeps the ball moving in a circle in
Figure 6.11?

6.6 [W, G, & N] In Section 6.5, the lever arm for momentum is described in the “Words” column as
being a distance that is related to the momentum vector but in the “Numbers” column it is instead
described as being related to the velocity vector. How can both of these be correct, or was this an
error?

Level 3 - Apply

6.7 [N] If the mass of the ball in Section 6.2 were doubled, how would that affect the radius of curvature
at the top of the left peak that was found in Section 6.3? Explain your reasoning.

6.8 [W & G] If the hammer in Figure 6.11 were released when the cord was to the South compared to
the thrower, in what direction would the hammer travel?

6.9 [N] Use the same analysis that was used in Section 6.4 to determine which planets in our solar
system have a higher tangential velocity than the earth. You will need to look up information about
the periods and radii of the orbits of of planets in our solar system to answer this question.

Level 4 - Analyze

6.10 [W, G, & N] Describe the energy of the diver in Section 6.1 at the top of the cliff and just before
they hit the water.

6.11 [G] Make energy bar graphs for the ball in Figure 6.5 for images 1 (where the ball is close to the
ground but not touching the ground), 4, 8, 13, 16 (where the ball is on the ground and not moving),
22, and 29 (where the ball is on the ground and not moving). Without a mass for the ball, it is not
possible to calculate the actual energies, so just make the relative heights of the bars as accurate as
possible.



6.12 [W & N] An angular velocity of the earth around the sun is calculated at the end of Section 6.4.
Convert that number into revolutions per year. Does your answer make sense? Explain.

6.13 [W & G] Look at the photograph of a fire poi dance at the beginning of Chapter 6. Assuming that
the balls of fire are moving at constant speed, identify places in the balls’ paths where the centripetal
acceleration has a large magnitude and places where it has a small magnitude.

6.14 [N] The earth’s mass is approximately 6 × 1024 kg. Use this information and the information in
Section 6.4 to find the amount of angular momentum that the earth has due to its orbit around the
sun. Use the position of the sun as the pivot point. Do the calculation in two different ways: One
using the angular speed of the earth and the other using its tangential speed. Verify that the result
is the same either way.

6.15 [N] The earth’s mass is approximately 6 × 1024 kg. Use this information and the information in
Section 6.4 to find the amount of kinetic energy the earth has due to its orbit around the sun. Do
the calculation in two different ways: One using the angular speed of the earth and the other using
its tangential speed. Verify that the result is the same either way.

Level 5 - Evaluate

6.16 [G & N] What effect would each of the follow changes have on the total time, final speed, and
horizontal displacement of the diver in Section 6.1?

(a) Doubling the initial velocity of the diver and keeping everything else the same
(b) Doubling the height of the cliff and keeping everything else the same
(c) Keeping the same initial speed but jumping up and out instead of just horizontally out from the

cliff, and keeping everything else the same

Level 6 - Create

6.17 [W, G, & N] At the beginning of Chapter 1 in Figure 1.1 was a template for a concept map. Add
the main ideas from this chapter to the concept map that you began for the question at the end of
Chapter 1.

6.18 [W, G, & N] Imagine you are writing a test question related to this chapter. Think of your own
example of a situation that you can analyze using the concepts, graphics, and mathematical analyses
described in this chapter. Describe the situation, and use the tools from this chapter to analyze the
situation as completely as you can, including motion, forces, energy, and momentum.

6.19 [W, G, & N] Think about possible misconceptions about the material in this chapter. Write a
question and an incorrect solution to it that demonstrates a student making such a conceptual error.
This cannot be a simple misuse of a vocabulary word, a unit error, or a mathematical error like
making an addition error or multiplying when addition was needed, unless the error is rooted in a real
misunderstanding about the physics behind the calculation or the misuse of a word. After you have
written the question and incorrect solution, explain what is wrong with the student’s solution, and
write a correct solution to the problem. Note: You may use a question from this chapter that you
got wrong the first time, and explain the initial error in your thinking and how you corrected it.



Chapter 7

Rotation

Figure 7.1: Sasha Cohen performs an I-spin at the
2009 Stars on Ice in Halifax, Nova Scotia.[36]

Interesting things happen when objects are al-
lowed to rotate. Ice skaters start a spin and then
go faster and faster seemingly without any effort.
Children’s tops fall over unless they are spinning.

At a playground or amusement park virtually every
piece of equipment involves rotation in one way or
another. Spinning wheels are used in almost every
form of modern transportation. Even transporta-
tion that doesn’t involve wheels, like flying in a
helicopter or walking, involves rotation around a
joint or axle.

This chapter focuses on a new set of tools–
still forces, motion, momentum, and energy–but
specifically applied to rotating objects.

Many things do not change. We will see that an-
gular force (called torque) changes angular mo-
mentum, causes angular acceleration, and does
work, much like force does in linear systems. En-
ergy and angular momentum are still conserved in
an isolated system. And most of the mathematical
models that we have used will apply equally well
to rotation after just a few small changes.



7.1 Kind of the Same

Words

To look at the similarities between linear and ro-
tational motion, forces, and momentum, we will
consider a thin, light rod with a small, massive ball
on one end, rotating around a fixed pivot location
at the opposite end of the rod. A “light” rod means
that the mass of the rod itself is negligible.

Linear motion is described by position, velocity,
and acceleration. Velocity is a change in position
(also called displacement) over time, and acceler-
ation is a change in velocity over time. Angular
motion will be described in exactly the same way.
The position is replaced by angular position, or sim-
ply angle. Angular velocity is a change in angular
position over time, and angular acceleration is a
change in angular velocity over time.

Each of these angular quantities is also directly re-
lated to its corresponding linear quantity in the tan-
gential direction. For example, if the length of the
rod were doubled but the angular velocity stayed
the same, the ball would trace out a circle with
twice the radius in the same amount of time, so
the tangential velocity would double; if the length
of the rod stayed the same but the angular veloc-
ity (rate of spin) was doubled, the ball would trace
out a circle of the same size in half the time, so
again the tangential velocity would double. So the
angular quantities are a combination of the linear
quantities and the radius.

Graphics

pivot

r

s, v
T , a

T

∆θ, ω, α

Figure 7.2: Looking down on the rod and ball.
The ball is following the dotted line
counterclockwise. s, vT , & aT are the linear
quantities corresponding to the angular quantities
∆θ, ω, & α, respectively. “α” is the lowercase
Greek letter “alpha.”[1]

Numbers

∆θ and ω were already given in terms of s and vT
in Section 6.4. Angular acceleration α, whose SI
unit is [rad/s2], is similarly related to aT .

α = aT
r

(7.1)

Every equation of motion that we have learned
works equally well for angular motion, simply by
replacing the linear quantities with their angular
counterparts. So, for example…

Ð⇀x =Ð⇀x0 +Ð⇀v0 ⋅ t +
1

2
Ð⇀a ⋅ t2

…becomes…

θ = θ0 + ω0 ⋅ t +
1

2
α ⋅ t2 (7.2)

Average acceleration becomes…

αavg =
∆ω

∆t
=
ωf − ωi

∆t
(7.3)

…and average velocity becomes…

ωavg =
∆θ

∆t
(7.4)

…and…

ωavg =
1

2
(ωi + ωf) (7.5)
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When we looked at linear motion, we saw that an
acceleration only exists if there is an unbalanced
force. So we would again expect that to be true
for rotational motion. An angular acceleration only
exists if there is an unbalanced angular force, which
is called a “torque.” The units of torque are [N ⋅m].

Several forces are shown in Figure 7.3, all with the
same magnitude. Which of them would create the
largest angular acceleration?

Two of the forces, F1 and F2, are acting right at
the pivot point. Since this physical scenario states
that the pivot point is at a fixed location, it can’t
move. That means neither of those two forces can
create any angular acceleration around the pivot.

F3 looks like a very good choice, and in fact this
is where you would probably apply the force if you
were in this situation trying to accelerate the ball.
Of all of the forces in Figure 7.3, F3 is most ef-
fective at creating angular acceleration, because it
creates the greatest amount of torque. F4 and F5

also create torque and will cause angular acceler-
ation of the rod an ball, but not as much as F3.
That is because F3 has the largest lever arm.

Just as forces cause a change in linear momentum
over time, torques cause a change in angular mo-
mentum over time.

pivot
F1

F2

F3

F4

F5

Figure 7.3: Several forces, all with the same
magnitude, applied to a ball attached to a pivot
by a light rod.[1]

The lever arms (r⊥’s) are zero for F1 & F2 since
they are both at the pivot. The lever arm for F3

is the length of the rod, and the lever arm for F5

is half the length of the rod. The lever arm for F4

is a bit more difficult to find. It is longer than the
lever arm for F5 but shorter than the lever arm for
F3.

pivot

r
r⊥

θ

F4

Figure 7.4: Finding the lever arm for F4 from
Figure 7.3.[1]

And, finally, the relationship between acceleration,
displacement, and velocity becomes…

2α ⋅∆θ = ω2
f − ω2

i (7.6)

The angular version of force is torque τ . “τ” is the
lowercase Greek letter “tau.” Torque increases with
the length of the lever arm:

τ = F ⋅ r⊥ (7.7)

As seen in Figure 7.4, the lever arm can be found
from the distance r to the pivot and the angle θ
between the vector being considered (in this case a
force vector) and the vectorÐ⇀r . Using trigonometry
gives…

r⊥ = r ⋅ sin θ (7.8)

Mathematically, torque affects rotating systems in
the same way that force affects linear systems.
That includes the ability to change angular mo-
mentum over time:

τ = ∆L

∆t
(7.9)
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7.2 Points and Hoops

Words

In Section 7.1, we considered a ball whose mass
is concentrated into a small point some distance
away from the pivot. Now we will explore what
happens to rotational kinetic energy when the mass
is distributed across a larger area.

In each of these examples of different mass distri-
butions, we will assume that the total mass of the
system m is the same, and that the mass is first
distributed and then the system is rotated at the
same angular speed ω.

To begin, instead of a single mass m at the end
of a light rod with length r, we will consider two
masses, each with a mass of m/2, connected by a
light rod, still keeping each mass at a distance r
from the center pivot point, rotating at a constant
angular speed ω.

For each of these masses, the tangential speed will
be the same as it was for the original single mass.
We will need to combine their kinetic energies.
Instead of a single mass at a certain speed, we have
two half-masses at the same speed. The kinetic
energy is the same, whether the mass is in one
location or split into two locations.

What if we split the mass into three, or four, or six,
or ten, or even more pieces, and kept all of them
the same distance from the pivot?

Graphics

pivot

r

m

ω

Figure 7.5: The original situation, with a single
point mass rotating around a pivot at angular
speed ω.[1]

r

m/2

m/2

ω

Figure 7.6: The second situation, with the same
mass split into two parts, with both parts at the
original distance from the pivot and the whole
system rotating at the original angular speed ω.[1]

Numbers

Assumptions: pointlike masses

From Section 6.5 the rotational kinetic energy for
a mass distribution like that in Figure 7.5 is…

Ek,r =
1

2
(m ⋅ r2) ⋅ ω2

For the mass distribution shown in Figure 7.6, we
need to consider each mass separately and add their
energies to find the total rotational kinetic energy.

Ek,r =
1

2
⋅ m
2
⋅ r2 ⋅ ω2 + 1

2
⋅ m
2
⋅ r2 ⋅ ω2

= 1

2
(m ⋅ r2) ⋅ ω2

The result is the same as if all of the mass were at
a single point.

Using the same analysis for a mass distribution
where the same mass is divided into a huge num-
ber N of small pieces, all kept at the same distance
from the pivot, we have to add up N energies:

Ek,r = N ⋅ (
1

2
⋅ m
N
⋅ r2 ⋅ ω2) = 1

2
(m ⋅ r2) ⋅ ω2

If N is large enough, all of the mass could be spread
out to be completely touching all of the way around
the circle, creating a hoop, without affecting the
rotational kinetic energy.
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If the angular speed remains the same, each piece
has the same tangential speed as the original sin-
gle mass. When we combine their kinetic energies,
the kinetic energy of the whole system is the same
whether the mass is in one location or split into
many locations. In fact, the kinetic energy would
be the same even if you spread the mass out into
a thin hoop at the same distance r from the pivot.

Let’s try one more thing. We will split the mass
into five equal parts, space them out equally in a
line so that the ones on the ends are at the original
distance r and the middle one is at the center,
and then spin them at the same angular velocity as
before.

The two pieces on the ends still move at the same
tangential speed as before, but the pieces that are
farther in move at a slower speed and the piece in
the center doesn’t move at all. So this time, when
we add up the kinetic energies for the five pieces
we will end up with less energy than before.

This time the way the mass is distributed has re-
duced the “rotational inertia” of the system of masses.
If an object has a large rotational inertia, that means
it is difficult to change its angular velocity. This is
analogous to saying that if an object has a large
mass, it is difficult to change its linear velocity.
Rotational inertia is the angular counterpart of mass.

The closer the mass is to the pivot, the smaller the
rotational inertia will be.

r

m/4

m/4

m/4

m/4

ω

Figure 7.7: The third situation, with the same
mass split into four parts, with all parts at the
original distance from the pivot and rotating at
the original angular speed ω.[1]

m/5

m/5

m/5

m/5

m/5

ω

Figure 7.8: The fourth situation, with the same
mass split into five parts at varying distances from
the pivot and rotating at the original angular
speed ω.[1]

For the situation shown in Figure 7.8, we have two
masses at radius r, two at r/2, and one at the pivot
point, so radius zero. When we add their kinetic
energies we get:

Ek,r = 2 ⋅
1

2
⋅ m
5
⋅ r2 ⋅ ω2 + 2 ⋅ 1

2
⋅ m
5
⋅ (r/2)2 ⋅ ω2 + 0

= 1

2
⋅ (1

2
m ⋅ r2) ⋅ ω2

This is a different result! If we want to keep the
form of our equation for rotational kinetic energy,
the expression in the parentheses is not always go-
ing to be m ⋅ r2.

The expression in the parentheses is called the “ro-
tational inertia,” I, and it is the angular counter-
part to mass. There will always be a mass and a
distance squared in I, but it also contains a mul-
tiplier that depends upon the distribution of the
mass. The multiplier gets smaller as the mass is
brought closer to the pivot.

Replacing linear variables with their angular coun-
terparts, we now have a few more mathematical
models for rotating systems:

Ek,r =
1

2
I ⋅ ω2 (7.10)

L = I ⋅ ω (7.11)

τ = I ⋅ α (7.12)
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7.3 Helicopter Blades

Words

A typical helicopter blade has a mass of approxi-
mately 60 kg and a length of approximately 10 m,
and the blades typically rotate at approximately
500 rpm. Assume that the blades of the two-blade
helicopter shown in Figure 7.9 can go from motion-
less to full angular speed in 5 seconds, with con-
stant angular acceleration over that time. What
can we find from this information?

Since we are dealing with rotational motion, we
should be thinking in terms of angular quantities:
angular position, angular velocity, angular acceler-
ation, angular momentum, torque, and rotational
kinetic energy.

Initially the blade is not moving, so no angular ve-
locity, no angular momentum, and no rotational
kinetic energy. But once the blade is spinning it
has all three of those, so that means that a torque
must have been acting on the blade, coming from
the engine inside the helicopter.

The torque does several things. For one, it causes
angular acceleration, increasing the angular veloc-
ity over time. The amount of angular acceleration
depends not only on the torque but also on the
rotational inertia of the blades. Increasing torque
will increase the angular acceleration, but increas-
ing the rotational inertia will decrease the angular
acceleration.

Graphics

Figure 7.9: A helicopter with two blades.[37]
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Figure 7.10: Similarly to linear velocity and linear
acceleration, the slope of an angular velocity vs
time graph is angular acceleration.[1]

Numbers

Assumptions: α is constant

Knowns Unknowns
mblade = 60 kg ???
lblade = 10m
ωi = 0 rad/s
ωf = 52 rad/s
t = 5 s
2 blades

The value for ωf in the table above was found by
converting from rotations per minute (rpm):

500 rotations

1 min
⋅ 2π rad

rotation
⋅ 1min

60 s
= 52 rad/s

We can find the average angular acceleration using
Equation 7.1:

αavg =
ωf − ωi

∆t
= (52 − 0) rad/s

5 s
= 10.4 rad/s2

We can also find the total angle that the blades
rotate through as they come up to full speed by
using Equations 7.4 & 7.5:

∆θ = ωavg ⋅∆t = 1

2
(ωi + ωf) ⋅∆t

= 1

2
(0 + 52) rad/s ⋅ (5 s) = 130 rad
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The torque also changes the angular momentum
of the blades. The change in angular momentum
depends only on the net torque and the time over
which that torque is applied.

And the torque also changes the rotational kinetic
energy of the blades. That is because the torque
is doing work on the blades, just as a force can do
work on an object that has linear velocity. Since
the blades are moving in the same direction as the
torque, the work is positive, increasing the kinetic
energy.

ω

point mass I =m ⋅ r2r

solid cylinder
or disk I = 1

2
m ⋅ r2r

hollow cylinder
or hoop I =m ⋅ r2

r

thin rod
around center I = 1

12
m ⋅ l2

l

thin rod
around end I = 1

3
m ⋅ l2

l

solid sphere I = 2

5
m ⋅ r2r

hollow sphere I = 2

3
m ⋅ r2r

Figure 7.11: Rotational inertia for various shapes,
each with mass m and the same radius r or length
l, when rotated around the vertical dashed line.[1]

Since we are dealing with rotation, it will be helpful
to find the rotational inertia. The rotational inertia
for several shapes are shown in Figure 7.11. We
need to look for the shape that is most similar to
the blades.

In this case, if we consider the two blades as a single
object with twice the length of one blade we can
use the “thin rod around center” from Figure 7.11.

I = 1

12
mtot ⋅ l2tot

= 1

12
(120 kg) ⋅ (20m)2

= 4000 kg ⋅m2

Now we can use Equation 7.7 to find the net torque
applied to the blades:

τ = I ⋅ α = (4000 kg ⋅m2) ⋅ 10.4 rad/s2

= 41600 N ⋅m

We can also use Equation 7.11 to find the final
angular momentum of the blades:

Lf = I ⋅ ωf = (4000 kg ⋅m2) ⋅ 52 rad/s
= 208000 kg ⋅m2/s

And finally, we can use Equation 7.10 to find the
final rotational kinetic energy:

Ek,r,f =
1

2
I ⋅ ω2

f =
1

2
⋅ (4000 kg ⋅m2) ⋅ (52 rad/s)2

= 5.4 × 106 J
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7.4 Figure Skating

Words

Describe what happens if a 60-kg skater who is
1.7 m tall with a torso diameter of 0.3 m is spin-
ning at a rate of 1.5 rad/s in the position shown
in Figure 7.12 and then brings themselves into a
vertical position, as in Figure 7.13.

When we are dealing with linear motion, we know
that the more mass something has, the more diffi-
cult it is to move. But once you get it moving, it
will have a large amount of momentum and kinetic
energy. For rotational motion, it is not just the
mass but how the mass is distributed that is im-
portant. This combination of mass and distance is
called the rotational inertia. Figure skaters are ex-
perts at changing their rotational inertia, which is
what is happening when they go from a horizontal
position to a vertical one.

For someone who has observed a spinning figure
skater, it is hard to forget what happens when they
change their rotational inertia. The figure skater
can start a spin, and then spin faster and faster,
apparently without any effort, without even push-
ing off again on the ice.

The only forces on the skater are gravity and the
normal force from the ice, exactly the same as for
the motionless rock we considered so long ago.
The rock didn’t suddenly start spinning faster and
faster. So how can a figure skater’s angular speed
increase when there is no torque?

Graphics

Figure 7.12: Tangxu Li at Lillehammer.[38]

ω

r

Figure 7.13: Sasha Cohen skating at Stars on Ice
in 2009, and an approximation of her shape for
finding her rotational inertia.[36]

Numbers

Assumptions: No horizontal forces; τ = 0

Knowns Unknowns
m = 60 kg ???
height l = 1.7m
radius r = 0.15m
ωi = 1.5 rad/s

We need to find the shape from Figure 7.11 that is
most similar to the skater, and use the rotational
inertia for that shape. In this case, we have two
different shapes to consider.

The final position shown in Figure 7.13 is simpler,
so we will start there. Sasha Cohen’s body does
not form a perfect solid cylinder, but there is no
better option among the shapes in Figure 7.11. It
should be noted that the location and direction of
the axis of rotation is important. The “thin rod”
in Figure 7.11 is rotating in such a way that its
ends go around, or one end stays in position while
the other end goes around. The “solid cylinder” is
rotating along the axis of the cylinder, which is the
direction in which Sasha is rotating.

Approximating Sasha as a solid cylinder, her rota-
tional inertia is

If =
1

2
m ⋅ r2 = 1

2
60 kg ⋅ (0.15m)2 = 0.675 kg ⋅m2
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For an isolated system, angular momentum is con-
served. That is the key to what is happening to
the figure skater. The figure skater has no linear
velocity, but they have angular velocity. Angular
momentum of a rotating object is the rotational
inertia times the angular velocity, just as linear mo-
mentum is the mass times the velocity.

So when the skater is spinning with their body in
a horizontal direction, their mass is spread out far
from the vertical axis around which they are spin-
ning. That gives them a large rotational inertia.
Then, when they pull themselves into a vertical po-
sition they are bringing their mass in close to the
axis around which they are spinning. This reduces
their rotational inertia. Since angular momentum
is conserved, reducing the rotational inertia creates
a corresponding increase in angular velocity.

This increase in angular velocity also results in
an increase in the rotational kinetic energy of the
skater, so work was done on the skater. Where
did the work come from? The skater does work on
their own body. A centripetal force, toward the axis
of rotation, is needed to keep something moving in
a circle. In order to move something closer to the
axis, the displacement is in the direction of that
force, so the skater has to do work to come to a
vertical position.

l

ω

r/2

Figure 7.14: An approximation of the shape of
Tangxu Li for finding his rotational inertia.[1]

The position that Tangxu Li is in is more difficult to
analyze, because his body is going in two directions.
His left leg is vertical, and so could be approximated
as a cylinder just as we did with Sasha. But the
rest of his body is horizontal and spinning end-to-
end, which is much more like the “thin rod around
center.” To find Tangxu Li’s rotational inertia, we
can make both of these approximations, and add
their rotational inertia. If we assume that his left
leg contains 1/4 of the mass of his whole body and
is 1/2 the radius of his torso, we have…

Ii = Ileg + Ibody =
1

2
(1
4
m) ⋅ (r

2
)
2

+ 1

12
(3
4
m) ⋅ l2

= (0.04 + 10.8) kg ⋅m2 = 10.8 kg ⋅m2

Apparently we really didn’t even need to take the
vertical leg into account. It is so close to the axis
compared to the rest of the body that it doesn’t
significantly affect the rotational inertia. Now we
can use conservation of angular momentum to find
the final angular velocity of the skater:

Lf = Li

If ⋅ ωf = Ii ⋅ ωi

ωf =
10.8

0.675
⋅ 1.5 rad/s = 24 rad/s

The angular velocity increases by more than a fac-
tor of 10! Now, using the Work-Energy Theorem
with Equation 7.10…

Wnet =∆E = 1

2
If ⋅ ω2

f −
1

2
Ii ⋅ ω2

i = 182 J

So 182 J of work was done by the skater to change
position while spinning.
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7.5 Charging a Radio

Words

In areas with limited access to electrical power,
hand-cranked devices are often used. Figure 7.15
shows a boy cranking a radio to charge its battery.
He has to push on the end of the 0.08-m-long han-
dle of the crank with a force of 5 N to get it to
move. If he cranks at a constant rate of 10 rad/s,
how much time will it take him to store 150 J of
energy in the battery, assuming that the charging
system is 100% efficient?

In this situation, we are given a force that is applied
a certain distance away from a pivot, so the boy is
applying a torque to the crank. With linear motion,
a force that is applied through a distance does work
(and so can store energy). The rotational corollary
of this is that a torque that is applied through an
angle does work.

The amount of work that the boy does will be
proportional to the torque and also proportional to
the angle. Since he is cranking at a constant rate,
the angle will change linearly in time. The force
he applies will have to be constant at 5 N so that
there is no acceleration. So the applied torque is
also constant. Since the angle changes linearly in
time and the force is constant, the energy stored
will also increase linearly in time. And since power
is energy per time, the power the boy produces and
stores is constant while he is cranking.

Graphics

Figure 7.15: A boy charging his hand-cranked
radio[41]

Numbers

Assumptions: 100% efficiency; +θ̂ is counterclock-
wise; viewing image from the left

Knowns Unknowns
r = 0.08m t

Fapplied = −5 N θ̂

ω = −10 rad/s
W = 150 J

The torque applied to the handle, as shown in Fig-
ure 7.16, is

τ = Fapplied ⋅ r ⋅ sin θ = −0.4 N ⋅m

The angular version of our expression for work done
by a force is…

W = τ ⋅∆θ (7.13)

…when the torque is constant. And since power is
work per time, it can also be expressed as…

P = τ ⋅ ω (7.14)

From Equation 7.13 the total angle that the boy
has to crank through to charge the radio is:

∆θ = W

τ
= 150 J

−0.4 N ⋅m
= −375 rad

…or approximately 60 full revolutions.
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pivot

r⊥

Fapplied

θ

Figure 7.16: The boy applies a clockwise torque
on the device, as seen from the left in Figure 7.15.
Note that this theta refers to the angle between
the force and the lever arm, not the rotation of
the crank.[1]
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Figure 7.17: A torque in the direction of angular
motion does an amount of work equal to the area
under the curve in a Torque-vs-Angle graph. [1]

Torque and angle are taken to be positive for this
graph. Using negative values as described in the
“Numbers” section, the area would be negative (so
under the x axis) but the angle would go right-to-
left instead of left-to-right, which creates another
negative. Looking at Figure 7.15 from the right
instead of from the left would have made both
torque and angle positive.

With the angular displacement we can find the time
using Equation 7.4.

∆t = ∆θ

ω
= 37.5 s

This question could also have been answered us-
ing a linear analysis of work done in the tangential
direction:

s = W

FT
= 150 J

−5 N
= −30m

We aren’t given a tangential velocity, but we can
find it from the angular velocity:

vT = ω ⋅ r = −0.8m/s

Then we can find the time:

∆t = s

vT
= 37.5 s

Whichever way the analysis is done, the result is
the same. The power generated by the boy is also
the same either way:

P = W

∆t
= 150 J

37.5 s
= 4W

It should be noted that there are two different kinds
of “W” in the expression above. The italicized one
in the numerator (W ) is Work; the one at the end
that is not italicized is watts.
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7.6 Hoop Rolling

Words

In the children’s game “hoop rolling,” a stick is
used to start a hoop moving and then to keep it
going. Let’s say that the hoop starts at rest and
accelerates uniformly across level ground to a speed
of 5 m/s to the right in 2.5 seconds. The hoop has
a mass of 0.4 kg and a radius of 0.2 m, and it
rolls without slipping. Describe everything you can
about this situation.

We know from considering other situations that ve-
locity changes in the direction of acceleration, so
acceleration is to the right. Momentum starts at
zero and increases to the right along with the ve-
locity, so there is a force to the right. Since the
ground is level, we don’t need to consider gravita-
tional potential energy, and there also is no spring
potential energy to consider. The hoop rolls with-
out slipping, and usually thermal energy is gener-
ated by surfaces sliding together or by collisions.
In this case, we don’t have either. So the hoop
starts with no kinetic energy and ends with kinetic
energy. This means that positive work was done
on the hoop, which makes sense because we have
already established that there is a force to the right
and the motion is to the right. Force in the direc-
tion of motion does positive work.

We have done all of that before. But that’s not all
that there is to the story. We haven’t taken into
consideration the fact that the hoop is rolling. This
is a physical scenario that involves both translation
(linear movement) and rotation.

Graphics

Figure 7.18: Statue of a boy playing “hoop
rolling.”[39]

r

ω s

∆x

Figure 7.19: As the hoop rolls, it does not slide,
so the distance it moves has the same magnitude
as the path length on the circumference of the
hoop, ∆x = s. As the hoop rolls, each mark on
the hoop will fall on its corresponding,
equally-spaced mark on the ground.[1]

Numbers

Assumptions: a is constant; rolls without slipping

Knowns Unknowns
Ð⇀v0 = 0 ???
Ð⇀vf = 5m/s x̂
∆t = 2.5 s
m = 0.4 kg
r = 0.2m

It is possible to approach this question just as we
would have after one or two chapters, using a lin-
ear analysis of motion, forces, etc. But this anal-
ysis will be done by analyzing it from an angular
perspective. Our knowns are all linear, but they
are connected to angular motion through tangen-
tial velocity. In the reference frame of a person
sitting at the center of the hoop, the ground goes
to the left at the speed at which the hoop is mov-
ing, and the bottom edge of the hoop moves along
with it.

ω0 = −
v0
r
= 0

ωf = −
vf

r
= −25 rad/s

Why the minus signs? It is possible to keep all signs
consistent mathematically, but it is often easier just
to look at a sketch and see whether the motion (
or angular momentum, or torque) is counterclock-
wise (+) or clockwise (-) and use the appropriate
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At first, the hoop is not rolling, so zero angular
velocity, but at the end it is rolling to the right,
which means that it is turning in the clockwise di-
rection. The standard “positive” angular direction
in physics is counter-clockwise, so the final angular
velocity is negative. That means that the angular
acceleration is also negative.

Angular momentum starts at zero and increases
along with angular velocity, in the negative direc-
tion, so there is a negative torque.

Torque is created by an off-center force. In this
case, the child is pushing to the right at some point
near the middle of the hoop, and friction with the
ground prevents it from rolling by pushing left on
the bottom of the hoop. It is the combination of
these two forces that creates the torque.

We also have one additional type of energy to con-
sider: rotational kinetic energy. Not all of the work
that the child did in pushing the hoop went into
linear kinetic energy; some went into rotational ki-
netic energy.

r

ω

Ff,s

Fapplied

Figure 7.20: We know that the net force is to the
right, because that is the direction of acceleration.
But we also know that there is a force of friction
to the left, because the hoop would slide to the
right without this friction.[1]

pivot

r (lever arm)

Ff,s

Fapplied

Figure 7.21: Force locations when considering
torque.[1]

If we use the center of the hoop as the reference
frame, the only motion of the hoop is rotational,
around the center of the hoop. So we can use the
center of the hoop as our pivot point. In this ref-
erence frame, it is the frictional force that is not
aligned with the pivot but is separated by a lever
arm distance. So it is the frictional force that cre-
ates the torque, making the hoop roll instead of
sliding.

sign. In this example, we can see that the hoop is
spinning clockwise.

Knowing the time, we can use Equation 7.3 to find
the angular acceleration:

α = ∆ω

∆t
= −10 rad/s2

We can also find the total angle that the hoop rolls
through as it comes up to speed in the 2.5 s.

∆θ = θ − θ0 =��*
0

ω0 ⋅ t +
1

2
α ⋅ t2 = 31.3 rad

It should be clear that the appropriate rotational
inertia is that of a hoop, so…

I =m ⋅ r2 = 0.016 kg ⋅m2

With this information, we can find final angular
momentum, torque, and final rotational kinetic en-
ergy:

Lf = I ⋅ ωf = −0.4 kg ⋅m2/s

τ = I ⋅ α = −0.16 N ⋅m

Ek,r,f =
1

2
I ⋅ ω2

f = 5 J

So the total work done by the child on the hoop
is…

Wnet =∆Ek,t +∆Ek,r =
1

2
m ⋅ v2f + 5 J = 10 J

For a rolling hoop, half of its kinetic energy is rota-
tional! We can use the Work-Energy Theorem to
find the force applied by the child:

Fapplied =
Wtot

∆x
= 10 J

r ⋅∆θ
= 1.6 N
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7.7 Center of Mass

Words

The idea of “center of mass” is important for ro-
tation. For one thing, the axis that an isolated,
rotating object spins around goes through its cen-
ter of mass. For another thing, when determining
the torque created by an object’s weight, all of the
object’s mass behaves as though it were sitting at
the center of mass.

For some situations, it is easy to find the center of
mass–it’s just in the center!

This is the case for something like a bocce ball,
which is a uniform, solid sphere. It is also the case
for something like a tennis ball, which is a uniform,
hollow sphere. Even though there is nothing actu-
ally at the center of the ball, that point is still the
center of mass.

And even for objects with more unusual shapes, like
a dumbbell, as long as the object is symmetrical,
the center of mass will be at its center.

For objects with asymmetrical shapes or for a sys-
tem of different objects, the center of mass is some-
where in the middle, shifted toward the side with
more mass. In the photo of the tennis ball, bocce
ball, and dumbbell, the tennis ball has a much
smaller mass than the other two, so the center of
mass of this group of three objects is somewhere
inbetween the dumbbell and the bocci ball. Where
exactly that center of mass is located depends upon
the relative masses of the objects.

Graphics

Figure 7.22: A tennis ball (top left), bocce ball
(top right), and dumbbell[1]

Figure 7.23: A stack of books of varying widths
and masses[1]

Numbers

The center of mass of an object or system of objects
is a position, so it is a vector quantity.

ÐÐ⇀xcom =
m1 ⋅Ð⇀x1 +m2 ⋅Ð⇀x2 +⋯

m1 +m2 +⋯
(7.15)

…where m1 and Ð⇀x1 refer to the mass and position
of object 1, m2 and Ð⇀x2 are for object 2, and every
object in the system is included in the sums.

The easiest way to use this equation is to break the
system up into pieces that have an obvious center
of mass, and use those as objects 1, 2, etc.

Figure 7.23 shows a stack of four books. The cen-
ter of mass of each individual book is at the center
of the book. If we know the mass and position of
each book we can find the center of mass of the
stack:

Book Mass Position
1 0.202 kg 10.7 cm
2 0.242 kg 12.2 cm
3 0.302 kg 13.9 cm
4 0.324 kg 16.2 cm

Combining this data using Equation 7.15 gives:

xcom =
14.6 kg ⋅ cm
1.07 kg

= 13.6 cm
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To see how this works with rotation, we will con-
sider a 3-m-long, 3-kg thin rod with a 4-kg point
mass on the end. Imagine the rod connected by a
hinge to a solid wall, and initially held out horizon-
tally, as shown in Figure 7.24. If the rod-and-mass
system is released from this position, what is its
initial angular acceleration due to gravity? What is
the initial tangential acceleration of the point mass
due to gravity?

One end of the rod is held by the hinge, so the
rod and point mass will rotate around the hinge
because of the torque caused by gravity. Since we
are dealing with rotation, we will need to find the
rotational inertia of the system. For that, we can
add up the rotational inertia of the rod rotating
around the end and the point mass.

We will also need to find the torque created by
gravity. To do this, we can first find the center
of mass of the system and then consider the force
of gravity of the whole rod-and-mass system to be
acting at that single point.

Figure 7.24: A long, thin rod with a mass on the
end, connected to a wall with a hinge.[1]

Knowns Unknowns
mrod = 3 kg αi

lrod = 3m aT,i,point

mpoint = 4 kg
g = 9.8m/s2

We can add the rotational inertia of the rod and
mass to find the rotational inertia of the system:

Isystem = Irod + Ipoint

= 1

3
mrod ⋅ l2rod +mpoint ⋅ l2rod

= 9 kg ⋅m2 + 36 kg ⋅m2

= 45 kg ⋅m2

We can also use Equation 7.15 to find the center of
mass in the x direction, taking the “x = 0” position
to be at the pivot:

xcom =
mrod ⋅ xrod +mpoint ⋅ xpoint

mrod +mpoint

= (3 kg) ⋅ (1.5m) + (4 kg) ⋅ (3m)
(3 kg) + (4 kg)

= 2.36m

Now we can use Equations 7.12 and 7.7 to find the
initial angular acceleration:

αi =
τ

Isystem

=
−Fg ⋅ xcom

Isystem

=
−msystem ⋅ g ⋅ xcom

Isystem

= −3.59 rad/s2
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7.8 Off-Center Rotation

Words

For most of the objects in Figure 7.11, the objects
are assumed to be rotating around their center of
mass. But sometimes we need to work with objects
that are rotating around a point that isn’t at their
center of mass.

Let’s take the example of the pendulum of a grand-
father clock. The pivot is at the top of a 0.9-m-long
rod, and the pendulum is composed of the rod itself
with a 10-cm-radius disk attached near the bottom
of the rod, centered at a position 0.78 m below the
pivot. We will assume that the rod and the disk
each have a mass of 0.3 kg. We can find the to-
tal rotational inertia of the pendulum around the
pivot.

We already have expressions for a thin rod rotating
around its end and a disk rotating around its center,
but we don’t have an expression for a disk rotating
far away from its center. Since the mass is farther
away from the axis of rotation in this case, we know
the rotational inertia has to be larger.

It turns out that it is fairly simple to change to a
different axis of rotation, as long as the new axis is
parallel to an axis of rotation that you already know
around the center of mass of the object. You just
need to add one additional piece to the rotational
inertia. This is called the “parallel axis theorem.”

Graphics

Figure 7.25: A grandfather clock. The pendulum
with a dark rod and brass disk can be seen behind
the glass.[40]

Numbers

Assumptions: uniform rod and uniform disk

Knowns Unknowns
mrod = 0.3 kg Itot

lrod = 0.9m
mdisk = 0.3 kg
rdisk = 0.1m
ddisk = 0.78m

The “parallel axis theorem” gives the rotational in-
ertia for an object that is rotating around an axis
other than its center of mass:

I = Icom +m ⋅ d2 (7.16)

…where d is the distance from the pivot to the cen-
ter of mass of the object.
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pivot

rdisk

ddisk

lrod

Figure 7.26: Schematic of the pendulum of the
grandfather clock[1]

In this case, the center of the disk is 0.78 m from
the pivot, so

Idisk =
1

2
mdisk ⋅ r2disk +mdisk ⋅ d2disk

= 1

2
⋅ (0.3 kg) ⋅ (0.1m)2 + (0.3 kg) ⋅ (0.78m)2

= 0.184 kg ⋅m2

That only accounts for the disk, not the rod. So
the total rotational inertia of the pendulum is…

Itot = Irod + Idisk

= (0.184 kg ⋅m2) + 1

3
mrod ⋅ l2rod

= (0.184 kg ⋅m2) + 1

3
⋅ (0.3 kg) ⋅ (0.9m)2

= (0.184 kg ⋅m2) + (0.081 kg ⋅m2)
= 0.265 kg ⋅m2
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7.9 Balancing

Words

Figure 7.27 shows a board and a brick balancing
on the end of another board. The brick has a mass
of 1.76 kg and its center of mass is 7.5 cm to the
left of the upright board. The horizontal board
has a length of 49 cm, and its left edge is 9.5 cm
to the left of the upright board. We can use this
information to find the mass of the horizontal board
and the normal force that the upright board applies
to the horizontal board.

The key to understanding this scenario is the rota-
tional corollary to Newton’s First Law. That law
states that if the net force on a system is zero then
the acceleration of that system is also zero. The
rotational corollary of that statement would be that
if the net torque on a system is zero then the angu-
lar acceleration of that system is also zero. Since
the system is balancing motionless, the accelera-
tion, both angular and linear, must be zero. That
situation is called “static equilibrium.”

There are actually two ways to approach this prob-
lem. One is by considering forces and torque as
described above, and the other is by considering
the center of mass. Let’s first consider the center
of mass.

Unless the brick, boards, and cement floor are
somehow glued or bolted together (they aren’t!),
then to remain balanced they have to be supported
at the center of mass. The center of mass of the
brick is clearly above the horizontal board. If it
weren’t, for example if it were hanging more than

Graphics

Figure 7.27: Two boards and a brick balancing[1]

rbrick
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rboard Fg,board

pivot

Figure 7.28: The forces and torques on the
balancing brick and the horizontal board.[1]

Numbers

Knowns Unknowns
mbrick = 1.76 kg mboard

rbrick = 0.075m Fn

rboard = 0.15m
g = 9.8m/s2

rboard was found by assuming that the center of
mass of the board is at the center of the board,
which is 0.245 m to the right of the left end of the
board, and thus

rboard = (0.245m − 0.095m) = 0.15m

For an object that is in static equilibrium, the net
force and the net torque are both zero:

Σ
Ð⇀
F = 0 (7.17)

Στ = 0 (7.18)

Calculation of the net torque around the pivot in
Figure 7.28 gives

Στ = τbrick +��*
0

τn − τboard = 0

Fg,brick ⋅ rbrick ⋅����:1
sin 90○ = Fg,board ⋅ rboard ⋅����:1

sin 90○

mboard =mbrick ⋅
rbrick
rboard

= 0.88 kg

We can also use Figure 7.28 as a free body diagram
to find Fn, since the sum of forces is zero.

ΣFy = −Fg,brick + Fn − Fg,board = 0156



halfway off of the end of the board, the brick would
fall. The combined center of mass of the brick and
the horizontal board has to be above the vertical
board for the same reason. If it weren’t, the hor-
izontal board would fall. The combined center of
mass of both boards and the brick also has to be
above the bottom of the vertical board. If it were
not, the vertical board would fall.

Now, we will consider the situation from the per-
spective of forces and torque. Since we are not
given information about the vertical board, and
not asked any questions about it, we will only use
torque to examine the brick and horizontal board.
If they were to fall, they would tip around a pivot
at the top of the vertical board. It doesn’t tip, so
that means the net torque around that pivot has to
be zero.

There is a gravitational force acting downward on
the brick, and since the brick is to the left of the
pivot, it would cause counterclockwise (or positive)
rotational motion. So the brick creates a positive
torque. The horizontal board must create an equal
but opposite torque to keep the system balanced.
When considering torque, all of an object’s mass
acts as if it is at a single point: the center of mass
of the object. The center of mass of the horizon-
tal board should be near the center of the board,
which is clearly to the right of the pivot. So the
mass of the horizontal board has to be just enough
that its gravitational force creates enough torque
to balance the torque created by the brick.

rbrick

Fn
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k

rboard Fg,board

pivot

Figure 7.29: An alternate location for the pivot,
allowing a solution for the normal force without
knowing the mass of the board.[1]

For a system in static equilibrium, it isn’t actually
moving around any pivot point, so we are free to
use any pivot point that is convenient. Notice that
when we set the pivot at the point where the boards
meet there was no torque generated by the normal
force. If we instead chose a pivot at the center of
mass of the horizontal board, its gravitational force
will not generate any torque.

Fn =mbrick ⋅ g +mboard ⋅ g = 25.9 N

We could have found mboard using center of mass
instead. Since we are free to choose our zero po-
sition, it is convenient to put it at the location of
the pivot in Figure 7.28, so that the center of mass
of the system is at r = 0. Using Equation 7.15…

rcom = 0 =
mbrick ⋅ rbrick +mboard ⋅ rboard

mbrick +mboard

mbrick ⋅ rbrick = −mboard ⋅ rboard

mboard =
(−1.76 kg) ⋅ (−0.075m)

0.15m
= 0.88 kg

A negative value was assigned to rbrick because it
is to the left of the zero point at the pivot.

We could also have found Fn without knowing
mboard simply by choosing a different pivot point.
This is illustrated in Figure 7.29.

Στ = τbrick − τn +����:0
τboard = 0

Fg,brick ⋅ (rbrick + rboard) = Fn ⋅ rboard

Fn =
mbrick ⋅ g ⋅ (0.075m + 0.15m)

0.15m
= 25.9 N
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7.10 Summary

Chapter summaries in this book are ordered by concept, not necessarily in the order in which they are
presented in the chapter. Mathematical models are grouped together at the end of each summary. See the
appendices for the meanings of all symbols used in this book.

General

• Objects have a “rotational inertia” that increases with mass and size. The farther an object’s mass is
distributed from the axis of rotation, the larger its rotational inertia.

• The rotational inertia of multiple parts can be added together for a complex shape.

• An object can only balance when its center of mass is supported.

Forces

• Torque [N ⋅m] is the angular quantity that corresponds to force. It is a force applied in a direction
that is not aligned with the pivot point, but separated from it by a lever arm distance.

• Torque causes angular acceleration, changes angular momentum over time, and does work through
an angle.

• Static equilibrium is when an object is completely motionless. It can only occur when net force and
net torque are both zero.

• When determining the torque created by an object’s weight, all of the object’s mass behaves as though
it is at the center of mass.

Motion

• Every equation of motion that we have learned works equally well for angular motion, simply by
replacing the linear quantities with their angular counterparts.

• The SI unit for angular acceleration is [rad/s2].

• The axis that an isolated, rotating object spins around goes through its center of mass.

Momentum

• A point mass has angular momentum if it has momentum in a direction that is not aligned with the
pivot point, but separated from it by a lever arm distance.

• Angular momentum is related to rotational inertia and angular velocity in the same way that linear
momentum is related to mass and linear velocity.

• Angular momentum is conserved for an isolated system.

Energy

• Rotating objects have rotational kinetic energy even if their center of mass is stationary.



Mathematical Models

equation restrictions on the validity of the equation

α = aT

r
(7.1) -none-

θ = θ0 + ω0 ⋅ t + 1
2
α ⋅ t2 (7.2) only valid when the net torque is constant

αavg = ∆ω
∆t
= ωf−ωi

∆t
(7.3) -none-

ωavg = ∆θ
∆t

(7.4) -none-

ωavg = 1
2
(ωi + ωf) (7.5) only valid when the net torque is constant

2 α ⋅∆θ = ω2
f − ω2

i (7.6) only valid when the net torque is constant

τ = F ⋅ r⊥ (7.7) -none-

r⊥ = r ⋅ sin θ (7.8) -none-

τ = ∆L
∆t

(7.9) -none-

Ek,r = 1
2
I ⋅ ω2 (7.10) -none-

L = I ⋅ ω (7.11) -none-

τ = I ⋅ α (7.12) -none-

W = τ ⋅∆θ (7.13) only valid when the torque is constant

P = τ ⋅ ω (7.14) only valid when the torque is constant

ÐÐ⇀xcom = m1⋅
Ð⇀x1+m2⋅

Ð⇀x2+⋯

m1+m2+⋯
(7.15) -none-

I = Icom +m ⋅ d2 (7.16)
-none-

“Parallel axis theorem”

Σ
Ð⇀
F = 0 (7.17) constant velocity, static equilibrium

Στ = 0 (7.18) static equilibrium



7.11 Questions

Questions are ordered according to Bloom’s Taxonomy, progressing from regurgitating information (Level
1) to synthesizing new information with previous knowledge to create something new (Level 6). The bold
letters at the beginning of each question indicate whether the question involves Words [W], Graphics [G],
and/or Numbers [N]. See the appendices for conversion factors.

Level 1 - Remember

7.1 [W & N] Make a table of the names and symbols of the linear quantities and their corresponding
angular quantities from the past two chapters.

7.2 [W & N] Add labels to each equation in the “Mathematical Models” section of the summary that
tell what the symbol to the left of the = sign represents.

Level 2 - Understand

7.3 [N] Calculate the rotational inertia I of the rod and ball as described in Section 7.1, if the length of
the rod is 0.4 m and the mass of the ball is 1.2 kg.

7.4 [W,G, & N] Try to rank the objects in Figure 7.11 in order from those with the most mass concen-
trated near the axis of rotation to those with the most mass concentrated far from the axis of rotation.
For the ones that have an r instead of an l, how do the numbers multiplying (m ⋅ r2) compare when
you have put the shapes in order?

7.5 [N] At the end of Section 7.2 are three mathematical models with very little explanation. Replace
the angular quantities in these three mathematical models with their linear counterparts, and verify
that they are all valid mathematical models.

(a) Equation 7.10 corresponds to…

(b) Equation 7.11 corresponds to…

(c) Equation 7.12 corresponds to…

Level 3 - Apply

7.6 [N] Use dimensional analysis to show that Equation 7.11 and Equation 6.9 have the same SI units.

7.7 [N] If the ball described in Section 7.1 has a mass of 3.2 kg and is spinning at a constant rate of
2.5 rad/s on a rod with a length of 0.9 m, find its kinetic energy, its angular momentum, and the net
torque that is being applied to keep it spinning at a constant rate.

7.8 [N] The analysis in Section 7.3 was done taking the two blades to be one object, a thin rod spinning
about its center. That wouldn’t work for a helicopter with three blades. Do the same analysis that
was done in Section 7.3 but for the helicopter shown in the figure below. Take the mass of each blade,
the length of each blade, the time, and the final angular speed to be the same as in Section 7.3.



Three-bladed helicopter.[42]

7.9 [W, G & N] If Sasha Cohen was spinning in the position shown in Figure 7.1 and then changed her
position to be that like that of Elena Glebova in the image below, would her angular momentum,
angular velocity, and rotational kinetic energy increase, decrease, or remain constant?

Elena Glebova in a spin.[43]

7.10 [G & N] Use Figure 7.21 and the torque that was found in Section 7.6 to find the magnitude of the
force of friction between the hoop and the ground.

7.11 [N] Figure 7.11 includes only one object that is not rotating around its center of mass: the “thin rod
around end.” Use the parallel axis theorem and the rotational inertia of a thin rod around its center
to verify the given rotational inertia for a thin rod around its end.

7.12 [N] Use the parallel axis theorem and one of the expressions for rotational inertia given in Figure 7.11
to find a simple expression for the rotational inertia of a solid sphere rotating around a point on its
outer surface.

Level 4 - Analyze

7.13 [N] Use dimensional analysis to find the SI unit for Ek,r. Is it the same unit that Ek has for linear
motion? Should it have the same unit? Explain your answer.

7.14 [W, G, & N] What is the total rotational inertia for two thin “half rods,” each of mass m/2 and
length l/2, rotated around their ends? Compare your answer to that for the rotational inertia of a
single full rod with mass m and length l, rotated around its center. What do you notice? Explain this
result.

7.15 [N] How much work did the engine do on the blades in Section 7.3? Show your work or otherwise
explain your answer.



7.16 [W & N] The initial tangential acceleration of the point mass in Section 7.7 was listed as an unknown,
but it wasn’t found. Find it. Consider the value that you found–is it surprising? Why or why not?

7.17 [W & N] The torque in Section 7.7 was calculated using the center of mass of the system as a
whole. Try finding the torques created individually by the rod and by the point mass. Would using
the individual torques have given the same answer for initial angular acceleration? Explain why or
why not.

Level 5 - Evaluate

7.18 [N] What effect does doubling angular velocity have on angular momentum and rotational kinetic
energy?

7.19 [W, G, & N] In Section 7.6, a child is rolling a hoop. What would change if all of the knowns stayed
the same, but the child was instead rolling a solid sphere?

7.20 [W, G, & N] In Section 7.6, a child is rolling a hoop. What would change if all of the knowns stayed
the same, but the radius of the hoop doubled?

7.21 [W, G, & N] Try placing the pivot in Section 7.9 at the point where the brick is resting on the
horizontal board. Does the equation for net torque also yield a valid solution at that location?
Explain your answer.

7.22 [W, G, & N] In the analysis that was done in Section 6.5, it was noted that the angular momentum
can’t change when the string falls off of the bolt because there is no force to change the angular
momentum. Now that we have learned more about angular momentum, we can see that the angular
momentum was also not changing before the string fell off of the bolt. Why did the force of tension
in the string, which was acting on the puck the whole time it was moving along a circular path, not
change the angular momentum of the puck?

Level 6 - Create

7.23 [W, G, & N] At the beginning of Chapter 1 in Figure 1.1 was a template for a concept map. Begin
a new concept map just for rotation.

7.24 [W, G, & N] Imagine you are writing a test question related to this chapter. Think of your own
example of a situation that you can analyze using the concepts, graphics, and mathematical analyses
described in this chapter. Describe the situation, and use the tools from this chapter to analyze the
situation as completely as you can, including motion, forces, energy, and momentum.

7.25 [W, G, & N] Think about possible misconceptions about the material in this chapter. Write a
question and an incorrect solution to it that demonstrates a student making such a conceptual error.
This cannot be a simple misuse of a vocabulary word, a unit error, or a mathematical error like
making an addition error or multiplying when addition was needed, unless the error is rooted in a real
misunderstanding about the physics behind the calculation or the misuse of a word. After you have
written the question and incorrect solution, explain what is wrong with the student’s solution, and
write a correct solution to the problem. Note: You may use a question from this chapter that you
got wrong the first time, and explain the initial error in your thinking and how you corrected it.



Chapter 8

Stability and Oscillations

Figure 8.1: A performer with Peking Acrobats
performing in Nashville, Tennessee.[44]

An object that is in static equilibrium has zero net
force and zero net torque acting on it. But what
happens to such an object if a small unbalanced
torque or unbalanced force is briefly applied?

In some situations, like that shown in the image
of the acrobat balancing on a pile of chairs, that
small torque will result in disaster. That’s what
makes acrobatic shows exciting to watch–we know
that a tremendous amount of skill is needed to
avert such a disaster.

In some situations, a small net torque or net force
will cause an object’s position to briefly shift, but
then the object will return to its original position.

And in some situations, a small net torque or net
force will cause an object to rock or swing back
and forth, until eventually friction brings every-
thing back into static equilibrium. This back-and-
forth motion is called an “oscillation.”

In this chapter we will explore what conditions de-
termine whether an object in static equilibrium will
experience disaster, return to its original state, or
begin to oscillate when it is disturbed, and we will
see how motion, momentum, forces, and energy
interact during oscillations.



8.1 The Great Pyramid of Giza

Words

The Great Pyramid of Giza is 137 m tall, 230 m
long on each side, and has a mass of roughly 6 bil-
lion kg. Its center of mass is centered approxi-
mately 34 m above its base. For our purposes we
will imagine that the sand it is sitting on is a hard,
rough surface that can’t be dented, and we will
consider the pyramid to be one solid, unbreakable
block, although in fact it is made up of roughly
2 million blocks of stone, and would break into
roughly 2 million pieces if we attempted this with
the actual pyramid!

First we will imagine briefly applying a force lifting
one side of the pyramid to create a small net torque
and see what happens to the pyramid. It would not
be easy to apply such a force. When the pyramid is
just sitting on the sand, there are two main forces
acting on it: The force of gravity, which can be
seen as acting downward on the center of mass of
the pyramid, and the normal force which is pushing
up from the sand all across the base of the pyramid
but which is usually shown acting at a single point
at the center.

To lift one side you would have to use a force that is
half the weight of the pyramid, as shown in Figure
8.2. All of the normal force from the sand would
be concentrated on the side opposite you, which
is where the pyramid would pivot. So your force
would have to create slightly more torque than the
force of gravity, but your lever arm is twice as long
as that for gravity.
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Figure 8.2: A huge applied force is needed to
create enough torque around the pivot point to
get the pyramid to move.[1]
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Figure 8.3: Gravitational potential energy is
smallest with the pyramid flat on the ground.[1]

Numbers

Assumptions: Pyramid is unbreakable; Sand is
rough (high friction) and cannot be dented.

Knowns Unknowns
m = 6 × 109 kg Fapplied,min

hpyramid = 137m
hcom = 34m
r⊥,g = 115m
r⊥,applied = 230m

One thing we should be able to find in this situation
is the minimum force needed to lift one side of the
pyramid when it is sitting on its base, Fapplied,min.
To find that force, we need to analyze the situation
shown in Figure 8.2 when it is in static equilibrium,
just before the applied force is enough to lift the
pyramid. The net torque around the pivot is zero
in static equilibrium, so…

τnet = 0 = τn + τg + τapplied

= Fn ⋅���*
0

r⊥,n − Fg ⋅ r⊥,g + Fapplied ⋅ r⊥,applied

Rearranging gives…

Fapplied =
Fg ⋅ r⊥,g
r⊥,applied

=
Fg

2

= m ⋅ g
2
= 2.9 × 1010 N
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When you release this force, the pyramid would
just fall back into its original position. So it takes
a huge force to create enough torque to move the
pyramid, and when this force is released, the pyra-
mid quickly goes back to its original state. It is
extremely stable, which is why it is still standing
forty-five centuries after it was built!

It is also possible to consider stability from an en-
ergy perspective. Objects like to go to the place
that will give them the smallest possible amount of
potential energy. In the case of the pyramid sitting
on its base, there is no other position that has less
gravitational potential energy, so it is very stable.

Now let’s imagine flipping the pyramid upside-down.
It can still be in static equilibrium if its center of
mass is aligned perfectly above the tip, but if a
small unbalanced torque is applied to the pyramid,
the torque created by the force of gravity will con-
tinue to rotate the pyramid in the same direction as
the initial torque, giving it more and more angular
momentum,and it will come crashing down. This
is an extremely unstable situation.

The center of mass in Figure 8.2 is above the base
of the pyramid, but in Figure 8.4 it is outside of
the “base” of the pyramid. In general, if the center
of mass is outside of the base that holds the object
up, it is in an unstable equilibrium unless there are
other forces holding it in place.

From an energy perspective, any shift in the angle
of the upside-down pyramid will give it less gravita-
tional potential energy, which means more kinetic
energy. So it will move away from the unstable
equilibrium position at higher and higher speed.

center of mass

pivot

FnFg
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Figure 8.4: A small applied force creates torque
around the pivot. This shifts the center of mass,
so the gravitational force creates torque in the
same direction.[1]
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Figure 8.5: Gravitational potential energy is
highest with the pyramid balanced on its tip. Here
0○ is the upside-down position.[1]

This is the maximum force that keeps the pyra-
mid in static equilibrium, which is equivalent to
the minimum force to start moving it.

There is no minimum force needed to start the
pyramid in motion when it is standing on its tip;
any applied force at all is enough to start the pyra-
mid in motion.

Gravitational potential energy in Figures 8.2 & 8.4
are calculated using ground level as zero. Since
the center of mass of the pyramid is always above
ground level, the gravitational potential energy is
always positive. The height above the ground is
calculated as a function of the angle of rotation,
keeping one corner of the pyramid on the ground.
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8.2 A Horizontal Spring and Mass

Words

Now we will consider a horizontal system, ignor-
ing any vertical forces because they are balanced
and there is no vertical motion. A 2.4 kg block
is motionless on a surface with negligible friction,
connected to a solid wall by a spring with a spring
constant of 90 N/m. Initially the block is resting at
its equilibrium position, but then it is struck by an
applied force that suddenly gives it a momentum
of 1.2 kg⋅m/s to the left. What happens to the
block?

If we look at this scenario in terms of energy, the
block is given some kinetic energy and initially has
no potential energy. But as the spring compresses,
it stores potential energy, taking away the kinetic
energy until the block completely stops moving. At
that point, the unbalanced force from the spring is
pushing the block back toward its starting point, so
the spring potential energy transforms back into ki-
netic energy. The block passes through its equilib-
rium position where it again has kinetic energy but
there is no potential energy, and continues with the
spring pulling against the motion until again all ki-
netic energy has been removed from the block and
stored as spring potential energy. The block will
continue to oscillate back and forth in this way.

As the block oscillates, it is not only the position
that is continually changing in time, but also its ve-
locity, acceleration, and momentum, and the force
that that spring is applying to it.

Graphics
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Figure 8.6: A mass on a spring is resting at its
equilibrium position, and then is briefly hit with a
horizontal applied force,giving it an initial
momentum to the left.[1]
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Figure 8.7: Spring potential energy is smallest at
the equilibrium position, so the block oscillates
around the equilibrium position.[1]

Numbers

Assumptions: horizontal direction only; ideal spring;
wall is immovable; friction is negligible

Knowns Unknowns
m = 2.4 kg ???
ks = 90 N/m
Ð⇀pi = −1.2 kg ⋅m/s x̂
Ff = 0
∆x0 = 0

We can use energy to analyze this situation, like
we did for the pyramid. We are given the initial
momentum and the mass, and we can use them to
find the initial kinetic energy.

Ek =
1

2
m ⋅ v2 = 1

2
m ⋅ p

2

m2
= 0.3 J

Rearranging gives kinetic energy in terms of mo-
mentum, which is a useful mathematical model
even when we aren’t dealing with oscillation:

Ek =
p2

2m
(8.1)

Now we can use conservation of energy to find the
maximum displacement of the spring while it is
bringing the block to a stop.
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Figure 8.8 shows the position, momentum, and net
force on the block as a function of time, although
we don’t know what the time scale should be. All
three of these follow a sine-wave type of pattern, al-
though they are shifted with respect to each other.
Notice that when the position is at a positive max-
imum the momentum is at zero and the force is at
a negative maximum. When the position is zero
the force is also zero and the momentum is at a
maximum, either positive or negative.

We could also create graphs for velocity and accel-
eration of the block, but they would be very similar
to the graphs for momentum and force. That is
because velocity is the momentum divided by the
mass and acceleration is the unbalanced force di-
vided by the mass.

The block and spring are in a stable equilibrium
because the net force is always in a direction that
pushes the block back toward the equilibrium po-
sition, never away from it. Or from an energy per-
spective we could say that the block and spring are
in a stable equilibrium because the potential energy
is always increasing and kinetic energy decreasing
when the block is moving away from the equilib-
rium position.

This type of oscillation, with an unbalanced, con-
servative force that is proportional to the dis-
tance from the equilibrium position and no non-
conservative forces, is called “simple harmonic mo-
tion.”

−5

0

5

⋅10−2

∆
x

[m
]

−1

−0.5

0

0.5

1

p x
[k

g
⋅
m

/s
]

−5

0

5

time

F
s,
x

[N
]

Figure 8.8: Position of the block, momentum of
the block, and force on the block as a function of
time. We don’t yet know the time scale, but it is
the same for all three graphs.[1]

Using the subscript “0” for the equilibrium posi-
tion and “max” for the position where the spring
is maximally stretched or compressed...

Emax = E0

����:0
Ek,max +����:0

Eth,max +Us,max = Ek,0 +���*
0

Eth,0 +���*
0

Us,0

1

2
ks ⋅∆x2

max =
p20
2m

Solving for ÐÐÐÐ⇀∆xmax gives…

Ð⇀
∆x = ±

¿
ÁÁÀ p20

ks ⋅m
x̂

= ±

¿
ÁÁÀ(−1.2 kg ⋅m/s)

2

90 N/m ⋅ 2.4 kg
x̂ = ±0.082m x̂

Now that we know that the maximum displacement
is ±0.082 m, we can use Hooke’s Law to find the
maximum force that is applied by the spring:

ÐÐÐÐ⇀
Fs,max = −ks ⋅

ÐÐÐÐ⇀
∆xmax

= − (90 N/m) ⋅ (±0.082m x̂)
= ∓7.38 N x̂

The significance of the upside-down “±” is that
when the displacement is in the positive direction
the force is in the negative direction, and vice-versa.
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8.3 Jupiter’s Moons

Words

Circular motion has a lot in common with oscilla-
tion. If viewed from the side, an object moving in
a uniform circular path appears to be oscillating in
exactly the same way as a mass on a spring. For
example, the planet Jupiter has four moons that
are large enough to see from the earth with an
amateur telescope or even a good pair of binocu-
lars. These four moons have roughly circular orbits
around Jupiter, but they always appear from earth
to be oscillating back and forth across Jupiter in
a straight line. We will call that line the parallel
direction.

The moon named “Callisto” is on the right of fig-
ure 8.9. Callisto’s orbit has a radius of 1.9×109 m,
and it completes one orbit every 17 earth days.
We can use this information to determine Callisto’s
position, velocity, and acceleration in the parallel
direction as it orbits Jupiter.

If we take time t = 0 to be when Callisto is all of the
way to the right as seen in Figure 8.10, then the
initial position of Callisto is at its maximum positive
value, +r. By the time it reaches the position at
the top of Figure 8.10, it would be hidden from
the earth, directly behind Jupiter. Its position in
the parallel direction is zero at that point. Then it
goes to −r (all of the way to the left), then back
to zero (in front of Jupiter as seen from the earth),
and finally back to +r again when it completes one
full period.

Graphics
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Figure 8.9: Jupiter and its four largest moons, as
seen from Earth. The parallel direction ∥̂ is in the
plane of the moons’ orbits.[45]

r

∥̂

to earthvT

ac

vT

ac

vT

ac

vT

ac

Figure 8.10: Callisto is shown at four different
points in its near-circular orbit, but from earth we
can only see it going back and forth in the
horizontal (∥̂) direction, so we see only the
parallel components of Ð⇀x , Ð⇀v , and Ð⇀a .[46]

Numbers

Assumptions: circular orbit; +∥̂ is to the right in
Figures 8.9 & 8.10

Knowns Unknowns
r = 1.9 × 109 m x∥

T = 17 earth days v∥

a∥

First we should convert the period of the orbit to
SI units: 17 earth days = 1.5 × 106 s. We can also
convert period into angular speed ω, since we have
used that more often more than period.

ω = 2π

T
= 4.3 × 10−6 rad/s

At all times in this full circle, its position in the
parallel direction can be described by…

x∥ = r ⋅ cos (ω ⋅ t)
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Velocity in the parallel direction also varies, but
it starts at zero at t = 0, since it is only moving
upward in Figure 8.10. Then it goes in the negative
direction, goes back to zero on the left side, goes
in the positive direction, and finally returns to zero
as Callisto completes one period.

Centripetal acceleration is always pointed toward
the center of the circle, so when the position is at
its maximum positive value, acceleration is at its
maximum negative value, and vice-versa.

When we analyzed the block on the spring, we con-
sidered momentum instead of velocity and net force
instead of acceleration, but remember that momen-
tum is proportional to velocity and net force is pro-
portional to acceleration, so if we graph them then
the shapes of their graphs will look the same, just
with a different scale.

Comparing Figures 8.8 and 8.11, we can see that
their shapes are very similar. Really there are only
two major differences. Their scales are different,
and the curves in Figure 8.8 are all shifted horizon-
tally by the same amount compared to the curves
in Figure 8.11. That is because the block on the
spring was initially at zero and moving to the left
while Callisto was initially at the far right and not
moving at all in the parallel direction.
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Figure 8.11: Parallel components of the position,
velocity, and acceleration of Callisto.[1]

We know that vT = r ⋅ ω, and the maximum value
of v∥ is vT , so Callisto’s velocity in the parallel
direction can be described by…

v∥ = −r ⋅ ω ⋅ sin (ω ⋅ t)

Since our other mathematical models in this sec-
tion depend on ω, it would be convenient to have
a mathematical model for centripetal acceleration
that is also dependent upon ω. We can create this
by taking our expression for centripetal acceleration
and converting linear velocity to angular velocity:

ac = r ⋅ ω2 (8.2)

Using this for the magnitude of the acceleration,
Callisto’s acceleration in the parallel direction is…

a∥ = −r ⋅ ω2 ⋅ cos (ω ⋅ t)

Combining Equation 8.2 with our equation for cen-
tripetal force gives us an expression that can be
used for centripetal force when we are given angu-
lar speed:

Fc =m ⋅ r ⋅ ω2 (8.3)
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8.4 Simple Harmonic Motion

Words

Simple harmonic motion was described in Section
8.2 as being caused by an unbalanced force that is
proportional to the distance from the equilibrium
position. Here we will consider more closely what
simple harmonic motion (SHM) looks like.

The position of an object that is undergoing SHM
moves back and forth in a regular, periodic way.
This means that if you wait for the object to go
through one complete cycle of its motion, it will
follow exactly the same motion through the next
complete cycle. The amount of time that you have
to wait for the object to go through one complete
cycle is called the period. This is exactly the same
way that a period is used when talking about cir-
cular motion: it is the amount of time needed for
an object to complete one full rotation.

For SHM, during one period the object never ex-
periences any sudden changes in motion, but is
gradually speeding up and slowing down. Its po-
sition, velocity, acceleration, momentum, and the
net force applied to it all follow the same type of
curve, which could be described as a sine shape or
a cosine shape.

If you look at a sine curve and a cosine curve, you
can see that they both have the same shape, but
they are shifted with respect to each other. For
simple harmonic motion, you could change one to
the other just by timing the motion starting from a
different point in the cycle, effectively moving the
point where time is defined as zero.
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Figure 8.12: Cosine (solid) and sine (dotted)
functions have the same shape but are shifted
with respect to each other.[1]
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Figure 8.13: Sine of the angle (dotted) and cosine
of the angle minus 90○ (solid) are the same.[1]

Numbers

We can create a mathematical model of simple har-
monic motion that works for any starting conditions
by introducing a “phase” φ, which is the amount
by which the object has to move to reach its max-
imum positive position. It makes sense to think of
it in terms of an angle when the object is following
a circular path like Callisto, but for an object like a
spring on a block it may be easier to think of it as
a shift in starting time to the time that the block
reaches the far right position. Then the mathemat-
ical model for position during SHM becomes…

x = A ⋅ cos (ω ⋅ t − φ) (8.4)

…whereA is the amplitude of the motion, the maxi-
mum distance that the object travels from the equi-
librium position. In the case of SHM A has units
of length, but this same mathematical model also
appears in other contexts where A can represent
other physical quantities like an electric field.

If we consider SHM of an object that starts at equi-
librium moving in the positive direction, the object
travels through 1/4 of a period before reaching the
maximum positive position. One period is 360○, so
φ is 1/4 of a period, or 90○. Figure 8.13 shows a
plot of the cosine of an angle minus 90○, illustrat-
ing that a shift of 90○ shifts the cosine function to
match an object starting at zero (on the vertical
axis) and moving in the positive direction as the
angle increases. This is completely analogous to
an object starting at zero position and moving in
the positive direction as time increases.
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We have already been introduced to the idea of a
“period” as being the time for an object that is fol-
lowing a circular path to complete one revolution.
For SHM, the period of the oscillation is the time
required for the object to complete one full cycle
of motion. That could be the time required for the
object to move from the maximum positive position
back to the maximum positive position. It is also
the time time required to go from the minimum
position back to the minimum position.

Looking at Figure 8.14, you can see that during one
period T the object passes through the equilibrium
position twice, so if you want to measure one period
from the equilibrium position then it is important
to measure from the time the object passes the
equilibrium position to the time when the object
again passes through the equilibrium position in the
same direction.

The maximum distance that the object travels from
the equilibrium position is called the amplitude of
the motion.
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Figure 8.14: Period T and amplitude A. Note
that A is measured only from the equilibrium
position, not top-to-bottom.[1]

Equation 8.4 is similar to the expression found for
x∥ in Section 8.3, just replacing r with A and in-
cluding φ inside the cosine function. Following the
same pattern of analysis that was used in Section
8.3, we can find mathematical models for the x̂
components of velocity and acceleration for SHM:

vx = −A ⋅ ω ⋅ sin (ω ⋅ t − φ) (8.5)

…and…

ax = −A ⋅ ω2 ⋅ cos (ω ⋅ t − φ) (8.6)
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8.5 A Vertical Spring and Mass

Words

Now we will consider a vertical system with no hor-
izontal forces and no non-conservative forces. A
spring with a spring constant of 4.5 N/m is hang-
ing from the ceiling. You attach a 0.6 kg mass to
the end, holding it so that the end of the spring
is in the same position that it was in before you
attached the mass, and then you suddenly release
the mass. What happens?

Probably you can imagine what will happen when
you release it. Because of gravity, the mass will fall,
stretching the spring, and then will bounce back to
the top, and it will continue repeating this same
pattern until friction with the air and within the
spring slows it to a stop, but we are assuming no
friction so it would just continue to bounce forever.

Can we be more precise about the motion of the
mass? If we start by looking at this scenario in
terms of energy, the mass initially has no kinetic
energy and there is no no potential energy stored
in the spring, but it is being held up, so it has gravi-
tational potential energy. As it falls, the mass loses
gravitational potential energy but gains kinetic en-
ergy, and the spring also gains spring potential en-
ergy since it is stretching. When the mass reaches
the lowest point in its bounce it stops moving, so
at that point it has lost all of its kinetic energy.
Since we know it will not go lower than this point
we can call this height y = 0, so it also has no grav-
itational potential energy at that point. All of the
energy has changed into spring potential energy.
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Figure 8.15: A mass is attached to a spring and
held in place at the equilibrium position of the
empty spring.[1]
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Figure 8.16: Energy bar graphs for the spring and
mass.[1]

Numbers

Assumptions: Ceiling is immovable; ideal spring;
no friction; horizontal direction only; +ŷ is upward

Knowns Unknowns
m = 0.6 kg ???
ks = 4.5 N/m
Ð⇀pi = 0 kg ⋅m/s
g = 9.8m/s2

Let’s begin with conservation of energy at three
important heights: ytop (at the top), ybot (at the
bottom), and ymid (at the equilibrium position. To
simplify the math we can make ybot = 0. We know
more about the energy at the top and bottom, so
we will begin with those…

Ebot = Etop

����:0
Ek,bot +����:0

Ug,bot +Us,bot =����:0
Ek,top +Ug,top +����:0

Us,top

Us,bot = Ug,top

1

2
ks ⋅ (ytop −���:0ybot )

2
=m ⋅ g ⋅ (ytop −���:0ybot )

ytop =
2m ⋅ g
ks

= 2.61m

This means that the bottom position is 2.61 m
below the point where the mass was released. The
amplitude of the oscillation is therefore…
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At the lowest point, the spring is able to pull the
mass back up, so we know that the spring force
must be larger than the force of gravity. The ki-
netic energy and the gravitational potential energy
both increase as the mass starts to rise, while the
spring potential energy decreases. The mass is not
moving at the top or the bottom, but has non-zero
velocity between the top and bottom, so there must
be some point where the speed and the momentum
are at a maximum. Momentum increases as long
as the force is in the same direction as the veloc-
ity, so there must be some point in the path of the
mass where the net force drops to zero and then
changes direction. In other words, there must be
a new equilibrium position along the path followed
by the mass.

Since the force of gravity is constant through-
out the path followed by the mass and the spring
force increases proportionally with the distance the
spring is stretched, the net force is also proportional
to the distance from the equilibrium position. That
means the oscillation of the mass is simple har-
monic motion.

Remarkably, the period of the oscillation does not
depend on the force of gravity. It also doesn’t de-
pend on the distance that the spring is stretched.
The period gets longer (so a slower oscillation) as
the mass increases, and the period gets shorter (so
a faster oscillation) as the strength of the spring
(the spring constant) increases.

Fg

Fs

Fg

Fs

Fg

Fs

Fg

top

mid

bot

midp p

Figure 8.17: FBD of the mass in four different
positions as it oscillates, including arrows showing
the direction of the momentum when the mass is
in the equilibrium position.[1]

A =
ytop − ybottom

2
= m ⋅ g

ks
= 1.30m

From the perspective of forces, Figure 8.17 shows
the two forces that act on the mass. The net force
is zero at the equilibrium position and increases
linearly with distance from the equilibrium position.
The equilibrium position is the point where…

Fg = Fs

m ⋅ g = ks ⋅ (ytop − ymid)

Solving for ymid gives…

ymid = ytop −
m ⋅ g
ks
= 1.30m

…at the center of the oscillation.

When the mass is at the top position, the only
force affecting it is gravity, so its acceleration is
−g ŷ. The mass is also in SHM, so its acceleration
is given by Equation 8.6, when the acceleration is
at its maximum negative value, so −A ⋅ ω2 = −g.
Solving for ω and using the expression we found
earlier for A gives…

ω =
√

g

A
=
√

g ⋅ ks
m ⋅ g

=
√

ks
m

The angular velocity does not depend on gravity, so
the result is valid for any spring-mass system, hor-
izontal or vertical. It is usually expressed in terms
of the period:

T = 2π
√

m

ks
(8.7)
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8.6 A Pendulum

Words

We have considered stability for objects sitting on
the ground and objects connected to springs. Now
we will consider an object that is hanging from a
rope. When the object is hanging straight down
and not moving, it is in an equilibrium position. Is
it a stable equilibrium?

If we think about it from the perspective of energy,
pushing the object away from the equilibrium posi-
tion in either direction will make it swing upward,
increasing its gravitational potential energy. That
means the equilibrium position is stable. The ob-
ject would begin to swing back and forth. Is the
oscillation simple harmonic motion? It depends…

We saw with the orbit of Callisto around Jupiter
that uniform circular motion looks like SHM when
viewed from the side. Let’s try looking at this mo-
tion the same way, in the horizontal direction. If
we start with the mass held out horizontally, that
will be the maximum possible displacement. But
at that point there are no forces in the horizontal
direction, when for SHM the horizontal force would
be at a maximum at that position. So a pendulum
does not have SHM in the horizontal direction.

Let’s try looking at the vertical direction. Here we
see that the equilibrium position is at the bottom,
but SHM always has the equilibrium position in the
center. So no SHM in the vertical direction.

We still have another option–maybe there is SHM
in the tangential direction?

Graphics

l

θ

Figure 8.18: A mass hung from a light rope.[1]
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θ

∥̂
⊥̂

Figure 8.19: FBD of the mass on the string when
at the position shown in Figure 8.18[1]

Numbers

Assumptions: pointlike mass; negligible friction;
negligible rope mass; near surface of earth

Knowns Unknowns
m = 3 kg ω ?
l = 1.5m T ?
g = 9.8m/s2

When the mass is a path length s = l ⋅ θ (with
θ measured in radians) away from the equilibrium
position, the force in the tangential (∥̂) direction
as shown in Figure 8.19 would be Fg ⋅ sin θ. So
the position is proportional to θ but the force is
proportional to sin θ.

Simple harmonic motion requires that the force be
proportional to the displacement, so a pendulum
does not display SHM in the tangential direction.

That is unfortunate, because SHM uses such easy
mathematical models. This is a good time to re-
member that many of our mathematical models are
really just approximations that work well in some
situations. We’ve already used an approximation
for gravitational force when analyzing the pendu-
lum, one that is only valid for a limited range of
heights at the surface of the earth.

Let’s see if our mathematical models for SHM
might also be valid in some limited range of an-
gles for the pendulum.
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To be able to work with the numbers, let’s make
the mass 3 kg, and hang it at the end of a light,
1.5-m-long rope.

The analysis shown in the “Numbers” column
demonstrates that in fact there is not SHM in the
tangential direction, but for small angles, when the
pendulum is not swinging far away from the vertical
position, the motion is almost the same as SHM,
so this “small-angle approximation” is often used
for analyzing the motion of the pendulum.

In the small-angle approximation, the period of the
pendulum does not depend on the mass, but it
does depend on the acceleration of gravity at the
earth’s surface and the length of the rope. The
period increases (so it slows down) as the rope gets
longer. If the pendulum were in a location where
the acceleration caused by gravity is smaller, for
example on the surface of the moon, the period of
the pendulum would also increase.
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Figure 8.20: Sine of the angle (solid line)
compared with the angle itself (dashed line),
measured in radians.[1]

Figure 8.20 shows that for small angles (measured
in radians), sine of the angle is roughly equal to the
angle itself. So if we keep the angle small, the force
is roughly proportional to the distance as measured
along the path length. That allows us to use the
mathematical models for SHM. Converting from x̂
directions to tangential directions, the maximum
positive value for position along the path length
for SHM as given by Equation 8.4 is…

smax = A = l ⋅ θmax

The maximum negative value for acceleration in
the tangential direction, which occurs at the same
position, is similarly given by Equation 8.6…

−aT,max = −A ⋅ ω2 = − (l ⋅ θmax) ⋅ ω2

…where the expression found above for A has been
substituted in. We can then use Newton’s Second
Law to go from aT to Fg…

−
Fg

m
⋅sin θmax = −�

�m ⋅ g
��m
⋅sin θmax = − (l ⋅ θmax) ⋅ω2

Solving for ω and canceling θmax with sin θmax

since we are using the small-angle approximation
gives…

ω =
√

g ⋅ sin θmax

l ⋅ θmax
=
√

g

l

This expression is usually given in terms of the pe-
riod, and is valid for small angles:

T = 2π
√

l

g
(8.8)
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8.7 Summary

Chapter summaries in this book are ordered by concept, not necessarily in the order in which they are
presented in the chapter. Mathematical models are grouped together at the end of each summary. See the
appendices for the meanings of all symbols used in this book.

General

• Simple harmonic motion looks exactly the same as one dimension of uniform circular motion.

• The time needed for an object to go through one complete cycle of simple harmonic motion is called
the period.

• The period of a spring-mass system depends only on the mass and the spring constant. As the mass
increases the period gets longer, and as the spring constant increases the period gets shorter.

• When the size of the swing is small, the period of a pendulum depends only on its length and the
acceleration due to gravity. As the length increases, the period gets longer, and as the acceleration
due to gravity increases the period gets shorter.

Forces

• An object is in a stable equilibrium position if disturbing the object causes a force or torque that
pushes the object back toward the equilibrium position.

• An object is in an unstable equilibrium position if disturbing the object causes a force or torque that
pushes the object even further from the equilibrium position.

• Simple harmonic motion is caused by a net force that is proportional to the distance from the equi-
librium position.

Motion

• An oscillation is a back-and-forth motion.

• The maximum distance that an object travels from the equilibrium position during simple harmonic
motion is called the amplitude of the motion.

Momentum

• It is an object’s momentum that causes it to continue moving through the equilibrium point during
an oscillation.

Energy

• Objects like to go to the position that will give them the smallest possible amount of potential energy.

• An object is in a stable equilibrium position if moving the object away from the equilibrium position
causes the object to gain potential energy.

• An object is in an unstable equilibrium position if moving the object away from the equilibrium position
causes the object to lose potential energy.



Mathematical Models

equation restrictions on the validity of the equation

Ek = p2

2m
(8.1) -none-

ac = r ⋅ ω2 (8.2) -none-

Fc =m ⋅ r ⋅ ω2 (8.3) -none-

x = A ⋅ cos (ω ⋅ t − φ) (8.4) Simple harmonic motion (SHM)

vx = −A ⋅ ω ⋅ sin (ω ⋅ t − φ) (8.5) Simple harmonic motion (SHM)

ax = −A ⋅ ω2 ⋅ cos (ω ⋅ t − φ) (8.6) Simple harmonic motion (SHM)

T = 2π
√

m
ks

(8.7) SHM of a spring-mass system

T = 2π
√

l
g

(8.8) Small-angle approximation, SHM of a pendulum



8.8 Questions

Questions are ordered according to Bloom’s Taxonomy, progressing from regurgitating information (Level
1) to synthesizing new information with previous knowledge to create something new (Level 6). The bold
letters at the beginning of each question indicate whether the question involves Words [W], Graphics [G],
and/or Numbers [N]. See the appendices for conversion factors.

Level 1 - Remember

8.1 [W] What are the factors that affect the period of the simple harmonic motion of a spring-mass
system?

8.2 [W] What are the factors that affect the period of the simple harmonic motion of a pendulum that
is swinging at a small angle?

8.3 [W & N] Add labels to each equation in the “Mathematical Models” section of the summary that
tell what the symbol to the left of the = sign represents.

Level 2 - Understand

8.4 [W & G] For an object that is experiencing simple harmonic motion to the left and to the right, in
what direction is its velocity when its position is…

(a) … at the far right?
(b) … at the far left?
(c) … at the equilibrium position?

8.5 [W & G] For an object that is experiencing simple harmonic motion to the left and to the right, in
what direction is its acceleration when its position is…

(a) … at the far right?
(b) … at the far left?
(c) … at the equilibrium position?

Level 3 - Apply

8.6 [W, & G] Analyze the static equilibrium position of the acrobat in Figure 8.1:

(a) Create a sketch that includes the main forces acting on the acrobat including an applied force
that creates a torque that would shift the acrobat out of equilibrium, as was done with the
pyramid in Section 8.1.

(b) Use the sketch to explain whether the acrobat is in a stable equilibrium position or an unstable
equilibrium position.

(c) Create a graph of gravitational potential energy vs angle, as was done with the pyramid in
Section 8.1. Without knowing mass or lengths, just draw the shape of the curve for the graph–
no scale is needed.

(d) Use the energy graph to explain whether the acrobat is in a stable equilibrium position or an
unstable equilibrium position.



8.7 [G] Figure 8.6 shows the block and spring at the time when the applied force suddenly gives momentum
to the block. This moment corresponds to the left sides of the graphs in figure 8.8, where the
displacement and force from the spring are both zero, and the momentum is at a large negative value.
Create your own sketches of the block and spring that correspond to the other times as marked in the
displacement graph from figure 8.8 that is reproduced below. Include arrows in the sketches showing
the direction in which the block is moving.
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∆
x
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]

A part of the graph from Section 8.2 with positions marked for this question.[1]

(a) Position “a”
(b) Position “b”
(c) Position “c”
(d) Position “d”

8.8 [G & N] Figure 8.11 has numbers on all of the axes of each graph, but except at t = 0 none of the
peaks, valleys or zero crossings occur on any of the gridlines. Calculate the values for…

(a) …the time when the position first crosses zero.
(b) …the time when the position first reaches its maximum negative value.
(c) …the time when the velocity first reaches its maximum positive value.
(d) …the time when the acceleration first reaches its maximum positive value.

8.9 [G & N] Figure 8.11 has numbers on all of the axes of each graph, but except at t = 0 none of the
peaks, valleys or zero crossings occur on any of the gridlines. Calculate the values for…

(a) …the maximum positive value of the position.
(b) …the maximum negative value of the position.
(c) …the maximum positive value of the velocity.
(d) …the maximum negative value of the velocity.
(e) …the maximum positive value of the acceleration.
(f) …the maximum negative value of the acceleration.

8.10 [N] Callisto has a mass of 1 × 1023 kg. Use that information along with the information provided in
Section 8.3 to find the following:

(a) The angular momentum Callisto has due to its orbit around Jupiter.
(b) The magnitude of the force of gravity between Callisto and Jupiter.
(c) The magnitude of the linear momentum Callisto has in its orbit around Jupiter.

8.11 [N] Find the period of the simple harmonic motion of the spring and mass from Section 8.5.

8.12 [N] The unknowns listed in Section 8.6 were never actually calculated. Find their values.



Level 4 - Analyze

8.13 [W] A statement is made in Section 8.1 that objects like to go to the place that will give them the
smallest possible amount of potential energy. Does this agree with what you have learned in earlier
chapters? Give at least two examples where this is the case. One example should be an object that
is held above the ground and then released.

8.14 [N & G] Create two more graphs to go with the others in Figure 8.8. One should be for velocity of
the block and one for acceleration of the block. The vertical scales should be correct for both graphs.

8.15 [N] Find the period of the simple harmonic motion of the spring and mass from Section 8.2.

8.16 [G & N] Calculate the heights of all of the energy bars in Figure 8.16.

8.17 [N] How could you change the pendulum in Section 8.6 so that its period would double?

Level 5 - Evaluate

8.18 [W, G, & N] The pyramid sitting on its base in Figure 8.2 is said to be in a stable equilibrium
position. But that is only true up to a certain point. How far would the pyramid have to be tilted
from this position to put it into an unstable equilibrium?

(a) Make a sketch of the pyramid when it reaches this unstable equilibrium position.
(b) Explain in words what it is that makes this position an unstable equilibrium
(c) Find the numerical value for the angle at which this unstable equilibrium occurs.

8.19 [W, G, & N] In Figure 8.16 the kinetic energy appears to be the same as the spring potential energy
at the middle height. Is there any height for this physical system (whether shown in this energy bar
graph or not) where…

(a) …the kinetic energy is equal to the gravitational potential energy?
(b) …the spring potential energy is equal to the gravitational potential energy?

If so, find the height. If not, explain why not.

8.20 [N]The “small-angle approximation” doesn’t actually say how small the angle needs to be. The critical
factor in this approximation is whether sin (θ) is reasonably close to θ when measured in radians. At
what angle is sin (θ) different from θ by…

(a) …0.1%?
(b) …1%?
(c) …10%?
(d) …a factor of 2?

Level 6 - Create

8.21 [W, G, & N] At the beginning of Chapter 1 in Figure 1.1 was a template for a concept map. Begin
a new concept map for stability, oscillations, and waves.

8.22 [W, G, & N] Imagine you are writing a test question related to this chapter. Think of your own
example of a situation that you can analyze using the concepts, graphics, and mathematical analyses
described in this chapter. Describe the situation, and use the tools from this chapter to analyze the
situation as completely as you can, including motion, forces, energy, and momentum.



8.23 [W, G, & N] Think about possible misconceptions about the material in this chapter. Write a
question and an incorrect solution to it that demonstrates a student making such a conceptual error.
This cannot be a simple misuse of a vocabulary word, a unit error, or a mathematical error like
making an addition error or multiplying when addition was needed, unless the error is rooted in a real
misunderstanding about the physics behind the calculation or the misuse of a word. After you have
written the question and incorrect solution, explain what is wrong with the student’s solution, and
write a correct solution to the problem. Note: You may use a question from this chapter that you
got wrong the first time, and explain the initial error in your thinking and how you corrected it.
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Chapter 9

Solids

Figure 9.1: Transverse waves traveling along battle
ropes.[1]

Figure 9.2: A millipede moving its legs in a
longitudinal-wave-like fashion.[47]

Up to this point, almost every object that we have
dealt with has been assumed to be completely
rigid. In this chapter we will start allowing “solid”
objects to bend, stretch, and break. When ob-
jects bend and stretch, they can transfer energy in
waves. In this chapter we will explore two differ-
ent types of waves in solids: transverse waves and
longitudinal waves.

Transverse waves occur when a material bends,
as with ”battle ropes.” A transverse wave occurs
when each segment of the object, in this case each
small section of rope, moves back and forth per-
pendicular to the direction that the wave is travel-
ing. The waves travel horizontally along the length
of the rope, but each individual section of rope is
moving vertically, perpendicular to the direction in
which the wave is moving.

Longitudinal waves occur when a material
stretches and compresses. When a millipede
walks, it moves its legs in longitudinal waves. A
longitudinal wave occurs when each segment of
the object, in this case the legs, moves back and
forth parallel to the direction that the wave is
traveling. The waves travel horizontally along the
length of the millipede’s body, and each individual
leg also moves forward and back horizontally along
the length of the millipede’s body. This creates
areas of compression, where the legs are closely
spaced, and areas of “rarefaction” where the legs
are widely spaced.



9.1 Modeling a Rope

Words

In the “Numbers” column we have been using
“mathematical models” to describe physics with
equations. These models are useful tools for de-
scribing physical situations, but often they are re-
ally only approximations that work under certain
conditions. We can also create other types of mod-
els to help us simplify physical scenarios to make
them easier to understand. Now that we are al-
lowing solid objects to bend and stretch, it can be
helpful to think of them not as single objects but
as a system of many small, interconnected objects.

For example, a rope can be modeled as a line of
small pieces of rope that are all held together. We
want the rope to be able to bend and stretch, so we
can think of all of the small pieces as being held
together with springs. Ropes don’t stretch very
much, but they bend easily, so for our model of a
rope we can assume that each individual piece in
Figure 9.3 can move up and down, but not left or
right.

What would happen if we started moving the right-
most piece of rope up and down with a period of
0.5 s, like the people are doing in Figure 9.1? Let’s
assume that the rope has a length of 6 m, a mass
of 12 kg, and is being pulled horizontally with a
tension of 150 N.

In our model of a rope, each piece of rope is con-
nected to the pieces on either side of it, so they
can pull on each other.
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Figure 9.3: Parts (a) through (f) are diagrams of
the same pieces of rope at different times. If
section “7” of the rope is moved up and down, it
creates a chain reaction of forces, momentum,
and energy traveling left through the rope.[1]

Numbers

Knowns Unknowns
m = 12 kg ???
l = 6m
T = 0.5 s
FT = 150 N

Each successive part in Figure 9.3 is a fixed time
interval after the previous part. Close examination
shows that the various “pieces” of the rope are all
affected in the same way, but at slightly different
times. Note that in part (b) of the figure, section
6 of the rope has no momentum (no green arrow)
but is experiencing a large downward force (blue
arrow). In part (c), section 5 of the rope has no
momentum but it is experiencing a large downward
force. In part (d) it is section 4 that is in the same
condition, and this trend continues to the left at
each successive time interval. There is a transverse
wave moving to the left.

As long as the transverse displacement of the wave
is small compared to the length of the wave, the
speed of a transverse wave on a rope is given by:

v =
√

FT

µm
(9.1)

…where µm is the linear mass density of the rope,
which is defined as…

µm ≡
m

l
(9.2)
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The forces and the resulting momenta of the pieces
of rope are shown at different times in Figure 9.3.
The force shown is the net vertical force caused by
the two pieces on either side of each piece. The
forces on piece 7 aren’t shown because there are
unknown forces coming from an external source–
only the forces that are within the rope are shown.
Each of the other pieces 1-6 are affected in exactly
the same way, just at different points in time. No-
tice that whatever happens to piece 4, for example,
next happens to piece 3. This creates a wave mov-
ing to the left, as shown in Figure 9.4.

The speed of the wave depends only on the tension
in the rope and the “linear mass density” of the
rope, where linear mass density is the mass of the
rope per unit of length.

We can see a sine-wave-like pattern developing in
the rope. We saw patterns like this in Chapter
8, but before it was normally in a graph with time
as the horizontal axis. This time we are seeing the
same pattern appearing not in time but in physi-
cal space. The time between successive peaks was
called the period. The distance between successive
peaks in space is called the wavelength.

Wavelength and period are related, because a pe-
riod is the time required for one wavelength to pass
by a given point in space. This can be seen by look-
ing at piece 6 in Figure 9.4. It goes through one
complete period from (b) t1 to (f) t5, during the
time that one wavelength passes by at speed v.

Frequency, measured in hertz (Hz), is the inverse
of the period, or the number of times a wavelength
passes a given point per second.
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Figure 9.4: This figure is based on Figure 9.3,
with the rope itself drawn over our model of the
rope. The up-and-down motion of the pieces of
rope result in a wave that moves to the left. The
length of the wave is called the wavelength λ, and
can be measured between successive peaks of the
wave.[31]

So this wave travels to the left at a speed of…

v =
√

150 N ⋅ 6m
12 kg

= 8.66m/s

Note that the speed of the wave doesn’t depend on
the transverse speed of each individual piece!

Wavelength λ is the physical distance between suc-
cessive crests in a wave, and it is related to the
speed and the period or the frequency f of the
wave:

λ = v ⋅ T = v

f
(9.3)

…where…

f = 1

T
(9.4)

So this wave has a wavelength of…

λ = 8.66m/s ⋅ 0.5 s = 4.33m

…and a frequency of…

f = 1

0.5 s
= 2 Hz
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9.2 The End of the Rope

Words

We have seen that a wave can travel along the
length of a rope, but what happens when the rope
ends? It depends. First we will consider what hap-
pens if the end of the rope is free to move.

Figure 9.5 uses the same model that we used be-
fore, but this time we are sending a single pulse to
the right instead of constantly shaking one end up
and down, and we are letting the end of the rope
(“piece 7”) move freely up and down, so it is only
affected by the forces from “piece 6.”

Notice what happens in the figure. Piece 7 actu-
ally goes much higher than the height of the orig-
inal pulse, and as it comes down (because of the
force from piece 6), it sends a pulse back to the
left. Notice that no piece of the rope ever crosses
the dotted equilibrium position line where the rope
would be if there were no waves on it at all.

The wave pulse that was sent in bounces back from
the free end of the rope.
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Figure 9.5: If piece “7” at the end of the rope is
allowed to move freely up and down, a wave pulse
moving to the right reflects back to the left when
it reaches the end.[1]

Numbers
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Now we will consider what happens if a wave pulse
reaches the end of a rope that is held firmly in
place.

Figure 9.6 again uses the same model that we used
before, but this time we are holding the end of
the rope (“piece 7”) firmly in place, so whatever
force comes from piece 6 will be counteracted by
whatever is holding the rope. Since this end of the
rope doesn’t move at all, we can say that it is fixed
in place.

Notice what happens in the figure. Piece 7 stays
fixed in place, and at t1 and t4 it is pulling very
hard on the rope. In fact, it pulls so hard on the
rope that the wave flips over when it reaches the
end.

The wave pulse that was sent in flips over and
bounces back from the fixed end of the rope. No-
tice that before it reaches the end of the rope, the
wave pulse is completely above the equilibrium po-
sition, and when it bounces back it is completely
below the equilibrium position.
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7

(e) t4

1 2 3 4
5 6

7

(f) t5

1 2 3
4 5

6 7

v

Figure 9.6: If piece “7” at the end of the rope is
held firmly in place, a wave pulse moving to the
right flips over and reflects back to the left when
it reaches the end.[1]
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9.3 Adding Waves

Words

In Section 9.2 we saw waves that were reflected
back from the end of a rope. During the time that
the wave is reflecting, the pieces near the end of
the rope are actually feeling the effects of both the
wave that is traveling to the right and the wave
that is bouncing off to the left, at the same time.
Interesting things can happen when waves are trav-
eling on a rope in two different directions.

Figure 9.7 shows two waves with equal amplitudes
and a sine-wave shape moving in opposite direc-
tions on the same rope. On the left and right, in
the regions where the waves aren’t interfering with
each other yet, each piece of the rope moves up
and down just as before. But notice what happens
in the center area once the waves meet.

The wave from the left is shown as a dashed line
and the wave from the right is a dotted line. When
they meet, they interfere with each other. At t3,
t5, and t7 the two waves are aligned with each
other, so there is “constructive interference.” The
position of the rope is the sum of the positions of
the two waves, so in this case it is a sine wave with
twice the amplitude of each individual wave.

At t4 and t6 the two waves are completely mis-
aligned with each other, so one is at a positive
maximum at the same place that the other is at
a negative maximum. This causes “destructive in-
terference.” The position of the rope is still the
sum of the positions of the two waves, which is the
equilibrium position at every point on the rope!

Graphics

(a) t0 vv

(b) t1

(c) t2

(d) t3

(e) t4

(f) t5

(g) t6

(h) t7

Figure 9.7: The two waves interfere with each
other in the region where they overlap, creating a
standing wave.[1]

Numbers

We can do an example involving a musical instru-
ment. The highest “E” string on a steel-string
acoustic guitar has a linear mass density of 4 ×
10−4 kg/m and a length of 0.65 m. How much ten-
sion is needed for the string to be correctly tuned
with a first harmonic frequency of 330 Hz? What
is the frequency of the second harmonic?

Assumptions: the amplitudes of the transverse
waves are small compared to the length of the
string

Knowns Unknowns
µm = 4 × 10−4 kg/m FT

l = 0.65m f2

f1 = 330 Hz

Figure 9.9 shows that for the first harmonic the
length of the string is half of one wavelength, so
λ1 = 2l. Since the harmonic is created by traveling
waves reflecting back and forth from the fixed ends
of the string, we can use the same mathematical
models that we used for traveling waves. Equa-
tion 9.3 relates the wavelength to the frequency
and the speed of the wave, and Equation 9.1 re-
lates the speed of the wave to the tension and lin-
ear mass density. Combining those mathematical
models gives…

λ = v

f
= 1

f
⋅
√

FT

µm
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The interference of these two identical waves com-
ing from opposite directions creates some points
on the rope, called “nodes,” that don’t move at
all. The interference also creates some points on
the rope, called “antinodes,” where the amplitude
of oscillation is very large. The nodes are equally
spaced at intervals of half of the wavelength of the
traveling waves.

Stringed instruments use this effect. If the ends
of a string are held tightly in place and then the
string is plucked, reflections of the resulting waves
on the string create “harmonics” in the string. The
first harmonic in such a string, shown at the top of
Figure 9.9, has a node at each end (since the ends
are held in place) and an antinode in the center.
The wavelength of the first harmonic is twice the
length of the string.

There are also other harmonics that are allowed on
such a string. The second harmonic still has a node
at each end, but also has a node in the middle.
The wavelength of the second harmonic is equal to
the length of the string. The third harmonic has
two nodes in the middle; the fourth harmonic has
three; and so forth. Higher harmonics have shorter
wavelengths and faster frequencies.

The “pitch” we hear when listening to something
is related to the frequency. We hear a higher pitch
for a higher (i.e. faster) frequency.

(f) t5

(g) t6

(h) t7

N A N A N A N

Figure 9.8: Looking at the parts of Figure 9.7
where the waves are interfering with each other,
in places called nodes (thick lines) the rope
doesn’t move at all and in places called antinodes
(thin lines) the motion of the rope is large.[1]

3rd harmonic
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N
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N

N
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λ1/2
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3λ3/2

Figure 9.9: The first three harmonics on a string
that is tightly anchored at each end. “N”
indicates a node and “A” indicates an antinode.[1]

…which can be rearranged to solve for the tension
force:

FT = (λ ⋅ f)2 ⋅ µm

Substituting in for the first harmonic…

FT = (λ1 ⋅ f1)2 ⋅ µm = (2l ⋅ f1)2 ⋅ µm = 73 N

We can again use Figure 9.9 to find information
about other harmonics. Notice the pattern relating
λ to the length of the string when the string is held
tightly at each end:

λn =
2l

n
(9.5)

…for the nth harmonic.

Rearranging the first mathematical model in this
section to solve for f and using Equation 9.5 for λ
gives the frequency for the nth harmonic:

fn =
n

2l
⋅
√

FT

µm
(9.6)

Putting in the values we already know gives a sec-
ond harmonic frequency f2 = 660 Hz.

189



9.4 Beat Frequencies

Words

We have looked at two waves that interfere with
each other while coming from different directions.
Waves also interfere with each other when traveling
in the same direction. If two waves have the same
speed, the same frequency, and are in phase with
each other, they interfere constructively, as shown
in Figure 9.10. In this case, the amplitude of the
combined wave is just the sum of the amplitudes
of the other two waves.

On the other hand, if the two waves have the same
speed, the same frequency, and are 180○ out of
phase with each other, they interfere destructively,
as shown in Figure 9.10. In this case, the combined
wave is zero everywhere. This is the principle used
by noise-canceling headphones. The headphones
detect sound waves and then create identical waves
that are 180○ out of phase with the detected waves,
and feed the combined sound wave to the ear.

Graphics

Figure 9.10: The top two patterns are waves
traveling in phase in the same direction. The
bottom pattern is the sum of the other two.[1]

Figure 9.11: The top two patterns are waves
traveling 180○ out of phase in the same direction.
The bottom pattern is the sum of the other
two.[1]

Numbers

When two waves with similar frequencies f1 and f2
interfere with each other, they produce a “beating”
pattern. The frequency of the beating, correspond-
ing to the dashed “envelope” in Figure 9.12, is…

fbeat = ∣f1 − f2∣ (9.7)

The “carrier frequency” of the beating wave, the
frequency that is actually heard beating, is simply
the average of the two frequencies that were added
together:

fcarrier =
f1 + f2

2
(9.8)
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When two waves of slightly different frequencies
interfere with each other, they create “beats.” At
some times the waves are aligned in such a way
that their amplitudes add, and at other times the
waves are aligned in such a way that their ampli-
tudes cancel. The result is a sound wave with a
frequency that is the average of the frequency of
the two slightly different original waves. But the
sound is not constant–instead it slowly increases
and decreases in amplitude, at a frequency that
is equal to the difference between the two original
waves. Figure 9.12: The top two patterns are waves with

slightly different frequencies traveling in the same
direction. They slowly go into phase and out of
phase with each other, so they add constructively
in some places and destructively in others. The
“beat” pattern on the bottom is the sum of the
other two. The dashed line is an “envelope” that
contains the beat pattern. This envelope travels
along with the wave. [1]
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9.5 Longitudinal Waves

Words

Longitudinal waves create areas of compression and
rarefaction in a material. Figure 9.13 shows a com-
pression wave pulse initially traveling to the right
and then reflecting back to the left.

With longitudinal waves, monitoring the maximum
and minimum locations of the pieces of material
was a good way to find the location of the wave.
But notice that in the figure the positions of the
individual pieces do not indicate the location of the
wave. Piece 2 shifts to the right when the wave
passes, and then it stays in the same position until
the wave passes that location again.

A better way to find the location of a longitudinal
wave is to look for the places where the spacing
between the pieces is different, either a compression
or a rarefaction. In Figure 9.13, the location of the
compressed spring is clearly moving to the right
from t0 to t3 and moving to the left from t4 to t6.

The location of the pressure wave is also where the
pieces of the rope are affected by the largest net
force. In the case of a compression wave pulse,
the net force on each piece is outward from the
compression.

The speed of a longitudinal wave in a solid depends
on the density and the elastic properties of the ma-
terial. A higher density causes a lower speed, and
a higher Young’s modulus (a measure of elasticity)
causes a higher speed.

Graphics

(a) t0
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(b) t1
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(c) t2
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Figure 9.13: If piece “5” is held firmly in place, a
compression wave pulse moving to the right
reflects back to the left when it reaches the
end.[1]

Numbers

To find the speed of a longitudinal wave through
a material, we need to know the Young’s modulus
Y and the mass density ρm of the material, where
density is mass per unit volume:

ρm ≡
m

V
(9.9)

…where m is the mass of a piece of material and
V is the volume of the piece of material. The m
subscript on ρm is to make it clear that we mean
the mass density. The following table gives these
values of ρm and Y for several different materials.
Note that Y varies by a factor of more than 100000
across these different materials.

Material ρm [kg/m3] Y [N/m2]
Rubber 1500 5 × 106

Tendon 1200 5 × 108

Nylon 1200 3 × 109

Bone 4000 2 × 1010

Concrete 2400 3 × 1010

Steel 8000 2 × 1011

Diamond 3500 1 × 1012
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Figure 9.13 considered a compression wave pulse
reflecting off of a fixed end of a piece of mate-
rial. Figure 9.14 shows what happens when the
same pulse reaches a free end of the material.
With nothing pushing back on piece 5, it moves
outward from its original position, pulling on piece
4 as it goes. This sends a rarefaction wave pulse
back to the left.

With longitudinal waves, the wave reflected off of
the end of the rope would be either flipped over or
not depending on the conditions at the end of the
rope. Longitudinal waves behave in a similar way–
compression bounces back as compression if the
end is firmly held in place but compression bounces
back as rarefaction if the end is free to move.

Rarefaction in a solid material creates regions of
tension, as can be seen by the stretched strings
in our model and the resulting net force arrows
that pull neighboring pieces of material toward each
other. Compression creates areas of pressure in the
material, where the springs in our model are com-
pressed and the resulting net forces push neighbor-
ing pieces of material away from each other.

(a) t0

1 2 3 4 5

(b) t1

1 2 3 4 5

(c) t2

1 2 3 4 5

(d) t3

1 2 3 4 5

(e) t4

1 2 3 4 5

(f) t5

1 2 3 4 5

(g) t6

1 2 3 4 5

(h) t7

1 2 3 4 5

Figure 9.14: If piece “5” is allowed to move freely,
a compression wave pulse moving to the right
creates a rarefaction pulse that reflects back to
the left.[1]

The speed of a longitudinal wave in a solid material
is given by…

v =
√

Y

ρm
(9.10)

Using the same guitar string example that we used
in Section 9.3, we can find the speed of a longitu-
dinal wave traveling along the length of the string:

v =
√

Y

ρm
=

¿
ÁÁÀ2 × 1011 N/m2

8000 kg/m3
= 5000m/s
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9.6 Stretching and Breaking

Words

The Young’s modulus tells us more about a mate-
rial than the speed of waves. It is a measure of how
much the material stretches or compresses when a
force is applied. The Young’s modulus of a ma-
terial is determined by its molecular structure–how
tightly bound the atoms are to each other and also
the configuration of bonds in the material.

There is also a limit to how much force can be ap-
plied to a given material before it breaks. Depending
upon the complexity of the bonds, the Young’s
modulus and other measures of the material prop-
erties could be dependent upon direction or they
could vary depending on whether the material is
under tension or compression.

Some materials have structure in them that is not
related to the molecules themselves but to larger
variations in the material. Wood is a good exam-
ple of this, because wood has a “grain,” and when
placed under tension, wood is much stronger across
the grain than it is along the grain.

Materials can also have vastly different properties
when they are under compression than when they
are under tension. Concrete, for example, is very
strong under compression but easily breaks under
tension. That is why iron “rebar” is often placed
inside concrete slabs in places where the concrete
could be under tension. Iron is very strong under
tension, so it holds the concrete together.

Graphics

Figure 9.15: A rope of length l stretches to a
length l +∆l when a force is applied.[1]

Figure 9.16: The board broke vertically into two
pieces, along the grains visible in the board, when
the black belt hit it with her foot. [48]

Numbers

By how much does a 5-m-long nylon rope with a
diameter of 2 cm stretch when it is pulled by a force
of 150 N?

Knowns Unknowns
r = 0.01m ∆l

l = 5m
FT = 150 N
nylon

The amount by which the length of a solid changes
when a force is applied is given by…

∆l = l ⋅ F
Y ⋅A

(9.11)

…where l is the original length, F is the force ap-
plied parallel to the length, Y is Young’s Modulus
for the material, and A is the cross-sectional area
of the material.

So for this example…

∆l = 5m ⋅ 150 N
3 × 109 N/m2 ⋅ π ⋅ (0.01m)2

= 8 × 10−4 m

Even for a relatively stretchy material like nylon,
the change in length is quite small. Most solids are
very difficult to stretch or compress.
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The breaking point of a material is strongly affected
by local factors. Materials often break not in the
place where the largest force is applied, but in the
place where the largest pressure is applied. Pres-
sure is defined as force per area, and it has units of
pascals [Pa]. Often tools that are made for break-
ing or cutting have sharp edges, so the force will
be applied over a very small area, creating large
pressure.

If force is applied evenly instead of being concen-
trated at a single location then breaks will usually
start at an inside corner or a place where the ma-
terial has a defect. Think of a chain, which is only
as strong as its weakest link.

Glass workers take advantage of breaks starting at
defects by intentionally scratching one side of a
plane of glass in the place where they want it to
break. This makes the glass break cleanly along
the scratch when the glass is flexed in such a way
that the scratched surface is under tension.

Figure 9.17: Rebar being added to cement.[49]

Figure 9.18: A thumbtack creates very little
pressure on the thumb, but enough pressure at
the bottom to punch into wood.[50]

Figure 9.19: Flexing upward creates tension along
the top and compression along the bottom.[1]

Consider the thumbtack in Figure 9.18. The top
surface has a diameter of 6 mm and the point at the
bottom narrows to 0.1 mm. How much pressure is
applied to the thumb and to the wood if you push
down on the thumbtack with a force of 40 N?

Knowns Unknowns
rthumb = 0.003m Pthumb

rpoint = 5 × 10−5 m Ppoint

Fthumb = 40 N

Pressure is defined as force per area:

P ≡ F

A
(9.12)

…where the force is applied parallel to the normal
vector; that is, perpendicular to the surface of A.

If we neglect the gravitational force and assume
that this is a static situation then the net force on
the thumbtack will be zero, so the force between
the thumb and the thumbtack is equal to the force
between the thumbtack and the wood. This allows
us to find the pressures:

Pthumb =
Fthumb

Athumb
= 1.4 × 106 Pa

Ppoint =
Fthumb

Apoint
= 5 × 109 Pa

The pressure on the wood is more than 1000 times
larger than the pressure on the thumb!
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9.7 Summary

Chapter summaries in this book are ordered by concept, not necessarily in the order in which they are
presented in the chapter. Mathematical models are grouped together at the end of each summary. See the
appendices for the meanings of all symbols used in this book.

General

• In a transverse wave, each piece of an object is moving in a direction perpendicular to the direction
in which the wave is moving.

• In a longitudinal wave, each piece of an object is moving in a direction parallel to the direction in
which the wave is moving.

• Compression refers to a state in which pieces of a material are pressed more closely together than
normal.

• Rarefaction refers to a state in which pieces of a material are separated more widely than normal.

• We can model a solid object as many small, interconnected objects to study how the object bends
and stretches.

• Wavelength is the physical distance between successive peaks in a wave.

• Frequency is the number of times an object goes through an oscillation (or also the number of times
a wavelength passes a given point) in a unit of time.

• Constructive interference occurs where two waves are completely aligned with each other, so their
amplitudes add.

• Destructive interference occurs where two waves are completely misaligned with each other, so their
amplitudes subtract.

Forces

• Rarefaction in a solid material creates regions of tension, and compression in a solid creates areas of
pressure.

• Pressure is defined as force per area, and it has units of pascals [Pa].

• Materials often break not in the area with the largest force but in the area with the largest pressure.

Motion

• The speed of a transverse wave depends upon tension and linear mass density.

• If the end of a rope is allowed to move freely, transverse waves bounce back from the end of the rope.

• If the end of a rope is held firmly in place, transverse waves flip over and bounce back from the end
of the rope.

• When two waves pass by each other, they interfere with each other so that the position of the object
is given by the sum of the two waves.

• A node is a place on a vibrating object that does not move.

• An antinode is a place on a vibrating object where the motion is at a maximum.



• A rope that is held tightly at each end can vibrate at harmonic frequencies where the wavelength is
some multiple of half the length of the rope.

• If the end of a solid is held firmly in place, longitudinal waves bounce back from the end of the rope.

• If the end of a solid is allowed to move freely, longitudinal waves change from compression to rarefac-
tion (or rarefaction to compression) and bounce back from the end of the rope.

• The speed of longitudinal waves depends on density and elastic properties of the material.

Momentum

• (Nothing!)

Energy

• Waves can transfer energy.
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Mathematical Models

equation restrictions on the validity of the equation

v =
√

FT

µm
(9.1) Transverse displacement is small compared to wavelength

µm ≡ m
l

(9.2) -none-

λ = v ⋅ T = v
f

(9.3) -none-

f = 1
T

(9.4) -none-

λn = 2l
n

(9.5) Vibrating string held firmly at each end

fn = n
2l
⋅
√

FT

µm
(9.6) Vibrating string held firmly at each end

fbeat = ∣f1 − f2∣ (9.7) -none-

fcarrier = f1+f2
2

(9.8) -none-

ρm ≡ m
V

(9.9) -none-

v =
√

Y
ρm

(9.10) Longitudinal wave

∆l = l⋅F
Y ⋅A

(9.11) -none-

P ≡ F
A

(9.12) -none-



9.8 Questions

Questions are ordered according to Bloom’s Taxonomy, progressing from regurgitating information (Level
1) to synthesizing new information with previous knowledge to create something new (Level 6). The bold
letters at the beginning of each question indicate whether the question involves Words [W], Graphics [G],
and/or Numbers [N]. See the appendices for conversion factors.

Level 1 - Remember

9.1 [W] What is the name of a wave in which the pieces of the material don’t actually move in the
direction that the wave is moving?

9.2 [W] What is the name of a wave in which the pieces of the material move parallel to the direction
that the wave is moving?

9.3 [W & N] Add labels to each equation in the “Mathematical Models” section of the summary that
tell what the symbol to the left of the = sign represents.

Level 2 - Understand

9.4 [W] Can transverse waves travel through a solid? If so, give an example.

9.5 [W] Can longitudinal waves travel through a solid? If so, give an example.

9.6 [W & G] Can wavelength be measured from trough to trough instead of from peak to peak?

9.7 [W & N] How could you change the amount of force to increase the pressure on an object?

9.8 [W & N] How could you change the area over which a force is applied to increase the pressure on
an object?

Level 3 - Apply

9.9 [W & N] How would doubling the mass of the rope while keeping its length and the tension the same
affect the speed of a longitudinal wave?

9.10 [N] Frequency is a useful concept not just for waves but also for circular motion and oscillations.
What is the frequency of Callisto’s orbit around Jupiter, which we considered in Section 8.3?

9.11 [W & N] The image below shows the end of the neck of a guitar. There are six strings, all made
from steel, that are various thicknesses. Each of the strings is connected to a knob at the top that
can be used to change the tension in the string. There are also horizontal metal “frets” along the
neck of the guitar. The string can be held down tightly against these frets to effectively shorten the
length of the string. Explain how each of these three things affects the frequency of the first harmonic
of each string:

(a) The thicknesses of the strings?

(b) The knobs that change tension?

(c) The use of the frets?



The neck of a guitar, showing the different thicknesses of the strings, the knobs that change
tension, and the frets.[1]

9.12 [N] The human range of hearing is roughly 20 Hz to 20 kHz. In addition, some humans can detect
beats in sound waves with beat frequencies as high as 7 Hz. Which of the following pairs of frequencies
would produce beats that could be audible to a person?

(a) 5 Hz & 7 Hz
(b) 50 Hz & 70 Hz
(c) 500 Hz & 700 Hz
(d) 5 kHz & 7 kHz
(e) 500 Hz & 500 Hz
(f) 500 Hz & 502 Hz

Level 4 - Analyze

9.13 [W & G] In Figure 9.3, in what direction is the wave moving and in what direction is the piece of
rope moving at piece 5…

(a) …at time t2?
(b) …at time t3?
(c) …at time t4?
(d) …at time t5?

9.14 [W & G] Compare the rope at time t1 and t5 in Figure 9.5. What do you notice about...

(a) …the positions of the pieces of the rope?
(b) …the forces on the pieces of the rope?
(c) …the momenta of the pieces of the rope?



Explain why there are similarities or differences in the forces and momenta.

9.15 [N] Use the information in the table in Section 9.5 and the linear mass density of the steel string in
Section 9.3 to find the diameter ∅ of the guitar string. The equation for the volume of a cylinder in
Appendix D may be helpful.

9.16 [W & G] Compare the rope at time t0 and t5 in Figure 9.6. What do you notice about...

(a) …the positions of the pieces of the rope?
(b) …the forces on the pieces of the rope?
(c) …the momenta of the pieces of the rope?

Explain why there are similarities or differences in the forces and momenta.

9.17 [N] Find the speed of transverse waves on the guitar string studied in Section 9.3. Compare this to
the speed of longitudinal waves on the same string studied in Section 9.5.

9.18 [W, G, & N] Explain using words, graphics, or numbers why lying down on thin ice is safer than
standing on thin ice.

Level 5 - Evaluate

9.19 [W & G] In the introduction to this chapter it mentions that waves can carry energy. Consider
Figures 9.3 & 9.4. Is energy being carried by this wave? What kind of energy or energies are
involved? If energy is being carried, in what direction is it moving on average?

9.20 [W & G] Explain how the forces shown by blue arrows affect the momentum shown by green arrows
in Figure 9.3 for piece 6.

9.21 [G] Make a sketch showing what the position of the rope would look like in Figure 9.5 at time t6.

9.22 [G] Make a sketch showing what the rope would look like in Figure 9.6 halfway between times t2 and
t3. Include arrows showing the forces and momenta associated with each of the “pieces” of the rope
at that time.

9.23 [G] In all of the figures in Section 9.4, the two waves that were being added together had the same
amplitudes. Re-draw all three waves in each of the three figures if the middle wave had half the
amplitude of the top wave. In each figure, the top wave should be unchanged, the middle wave
should be half its current amplitude, and the bottom wave should be the new sum of the top two
waves.

9.24 [W & N] The force of gravity was neglected when considering the pressures involved when using a
thumbtack in section 9.6. Determine whether it was reasonable to neglect the force in this situation
by determining what the mass of the thumbtack would have to be to create a 10% change in one of
the calculated pressures.

9.25 [W & G] The image below shows a truck sitting on a bridge that is made from a simple slab
of concrete, shown with light diagonal markings. Answer the following questions using words or
drawings.

(a) What side of the concrete is under tension?
(b) What side of the concrete is under compression?
(c) Where is the concrete most likely to break, considering that it is weaker under tension than it is

under compression?
(d) If you could add iron rebar to only one side of the concrete, where should you put it?



A truck on a bridge.[1]

9.26 [W & G] The image below shows a truck sitting on a cantilever bridge that is made from a simple
slab of concrete, shown with light diagonal markings. Answer the following questions using words or
drawings.

(a) What side of the concrete is under tension?
(b) What parts of the concrete are under compression?
(c) Where is the concrete most likely to break, considering that it is weaker under tension than it is

under compression?
(d) If you could add iron rebar to only one part of the concrete, where should you put it?

A truck on a cantilever bridge.[1]

Level 6 - Create

9.27 [W, G, & N] At the beginning of Chapter 1 in Figure 1.1 was a template for a concept map. Add
the main ideas from this chapter to the similar concept map that you began for the question at the
end of Chapter 8.

9.28 [W, G, & N] Imagine you are writing a test question related to this chapter. Think of your own
example of a situation that you can analyze using the concepts, graphics, and mathematical analyses
described in this chapter. Describe the situation, and use the tools from this chapter to analyze the
situation as completely as you can, including motion, forces, energy, and momentum.

9.29 [W, G, & N] Think about possible misconceptions about the material in this chapter. Write a
question and an incorrect solution to it that demonstrates a student making such a conceptual error.
This cannot be a simple misuse of a vocabulary word, a unit error, or a mathematical error like
making an addition error or multiplying when addition was needed, unless the error is rooted in a real
misunderstanding about the physics behind the calculation or the misuse of a word. After you have
written the question and incorrect solution, explain what is wrong with the student’s solution, and
write a correct solution to the problem. Note: You may use a question from this chapter that you
got wrong the first time, and explain the initial error in your thinking and how you corrected it.



Chapter 10

Liquids

Figure 10.1: Molecules in a liquid behave like people
in a crowd.[52]

Figure 10.2: Fluids (of which liquids are one example)
take the shape of their container.[51]

We created a model of a solid that was made
up of many small pieces all held together by
springs. This model works all of the way down
to the molecular scale, with the springs represent-
ing the forces holding individual molecules to each
other. Now we will begin to explore liquids. The
molecules of a liquid behave differently from those
of a solid. They are closely spaced, much like a
solid, but there are not strong bonds between the
molecules to hold them in place; they are free to
move around while still staying close together.

We can think of molecules in a liquid like peo-
ple in a crowd–they are closely spaced, able to
move around, and taking the shape of the avail-
able space.

Much like most solids, most liquids are not easily
compressed into a smaller volume–we will consider
them to be completely incompressible, so they will
have a constant volume. But unlike solids, liquids
can flow and change shape, usually to fit the shape
of a container.

A material that can flow and change shape is called
a fluid. Liquids are the first type of fluid that we
will consider. Gases are another type of fluid that
we will study later.



10.1 Doric Temple of Athena Lindia

Words

The idea of pressure has already been introduced as
a force per area. Let’s explore that idea in a solid
and a liquid. The ruins of the Doric Temple of
Athena Lindia in Rhodes have sandstone columns
that are 8 m tall and 1 m in diameter. How much
pressure do these columns apply to the floor of the
temple? What would the pressure be if the column
were instead made of liquid water in a cylindrical
tube?

To find the pressure on the floor, it seems like we
should need to know the gravitational force and
the area. To find the gravitational force we would
need the mass, but we aren’t given that. We need
some additional information about sandstone: its
density, that is its mass per volume. The density
of sandstone is 2400 kg/m3.

If we take the column to be a uniform cylinder,
its volume is its height times its cross-sectional
area. So as that area increases, so does the volume,
which means a larger mass. But we also know that
pressure decreases as area increases. So it turns
out that while the force on the ground does depend
on the diameter of the column, the pressure on the
ground doesn’t. It only depends on the density and
the height.

It is also important to note that if the column is
in static equilibrium then the ground is applying
an equal-but-opposite upward force on the column,
over the same area, so the earth also applies the
same amount of pressure back on the column.

Graphics

Figure 10.3: The sandstone columns are 8 m tall
and 1 m in diameter.[53]

ρm

P

h

Figure 10.4: A solid column of height h and
density ρm applies pressure on the ground.[1]

Numbers

Assumptions: a cylinder is a good approxima-
tion of the shape; near the surface of the earth;
sandstone and water are incompressible

Knowns Unknowns
h = 8m Psandstone

r = 0.5m Pwater

ρm,sandstone = 2400 kg/m3

ρm,water = 1000 kg/m3

g = 9.8m/s2

The volume of a cylinder is the height times the
cross-sectional area. Taking these to be perfectly
round cylinders, that gives…

Vcylinder = h ⋅ (π ⋅ r2)

…where π ⋅r2 is the cross-sectional area. Since pres-
sure at the bottom of the column is the force per
area, near the surface of the earth that would be…

P =
Fg

A
= m ⋅ g
π ⋅ r2

We can rearrange our expression for mass density
to solve for m, and then combine that with the
volume of the cylinder:

m = ρm ⋅ V = ρm ⋅ h ⋅ π ⋅ r2

Putting this together with our expression for the
pressure at the bottom of the cylinder:
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If instead of being solid the column were made of
a liquid with the same density as sandstone, then
the total force and total pressure on the ground
would be exactly the same. Of course if the column
were liquid then it wouldn’t actually stand up on its
own–it would flow downward, spreading all over the
ground instead. So if we want to consider a column
of water then we have to add a tube holding it in
position.

In order to keep the liquid in place, the tube would
have to supply a pressure inward that is exactly
equal to the pressure with which the liquid pushes
out on the tube. The pressure in a fluid (liquid is
a type of fluid) pushes out in all directions. So at
the bottom of the tube, the pressure on the sides
of the tube would be the same as the downward
pressure on the earth. But the pressure decreases
as you go up the column, reaching zero at the top,
because there is less and less liquid pushing down
from above due to gravity. This is illustrated in
Figure 10.5.

If the liquid were fresh water, then the downward
pressure on the ground would be lower than the
pressure for a sandstone column, because the den-
sity of water is 1000 kg/m3, which is lower than
the density of sandstone.

“Specific gravity” is often used in the medical field
as a unitless way to refer to density. Specific gravity
is simply the density of some material compared to
the density of fresh water. So fresh water has a
specific gravity of 1. Sandstone, with density 2.4
times that of water has a specific gravity of 2.4.

ρm

P
P P

h

Figure 10.5: A column of liquid in a tube applies
outward pressure on the ground and also on the
sides of the tube. The amount of pressure
increases with depth h.[1]

P = ρm ⋅ h ⋅���π ⋅ r2 ⋅ g
���π ⋅ r2

P = ρm ⋅ g ⋅ h (10.1)

It is interesting that the pressure doesn’t depend on
the cross-sectional area of the pillar. There is also
nothing that limits the analysis to a solid, so it is
also valid for liquids. For a liquid, h represents the
height of the surface above the point of interest,
or alternatively the depth of the point of interest
below the surface.

If the column is sandstone, the pressure it applies
to the earth is…

Psandstone = ρm,sandstone ⋅ g ⋅ h = 188000 Pa

If the column is water, the pressure it applies at the
bottom (to the earth and to the sides of the tube)
is…

Pwater = ρm,water ⋅ g ⋅ h = 78000 Pa

At a position higher up the column, for example
1 m from the ground, the pressure that the water
applies to the sides of the cylinder is…

Pwater = 1000 kg/m3 ⋅ 9.8m/s2 ⋅ (8 − 1) m
= 69000 Pa
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10.2 Transfer of Pressure

Words

We have already noted that liquid takes the shape
of the container that it is in, but what happens to
the pressure in the liquid if the container is oddly
shaped, or if the container is squeezed with some
additional applied pressure besides just the force of
gravity on the liquid itself?

Many mechanical systems, like brakes in a car or
the arms of cranes and backhoes, are controlled by
hydraulic systems, in which a liquid fills a series
of hoses and chambers, and pistons are used to
apply pressure to the liquid in one location so the
liquid applies pressure in another location. We will
consider a simple system to understand how these
hydraulic systems work: A pitcher with a narrow
neck.

The pitcher is 16 cm tall, including a 2 cm diameter
neck and an 8 cm diameter sphere at the bottom.
We will assume that it contains water, and we will
consider it when completely filled and when “half-
filled” just to the bottom of the neck.

Since the pressure created in a liquid by gravity de-
pends only on the density of the liquid and the dis-
tance below the surface, perhaps surprisingly, the
actual shape of the container doesn’t matter. If
the pitcher is “half-filled,” meaning up to half of
the height, then the pressure at the bottom will be
half what it would be if the container were filled.

Graphics

Figure 10.6: A 4th century pitcher with a long,
narrow neck. [54]

0.08 m

0.08 m

Figure 10.7: Pressure in the filled pitcher[55]

Numbers

Assumptions: a cylinder and sphere is a good ap-
proximation of the shape; near the surface of the
earth; water is incompressible

Knowns Unknowns
hpitcher = 0.16m Pfilled

rneck = 0.01m Phalf−full

hneck = 0.08m Vfilled

rsphere = 0.08m Vhalf−full

ρm,water = 1000 kg/m3

g = 9.8m/s2

First, we will imagine the pitcher filled with water.
The volume of the water would be the volume of
the neck plus the volume of the sphere:

Vfilled = π ⋅ r2neck ⋅ hneck +
4

3
π ⋅ r3sphere

= π ⋅ (0.01m)2 ⋅ 0.08m + 4

3
π ⋅ (0.08m)3

= 2.5 × 10−5 m3 + 2.14 × 10−3 m3

= 2.17 × 10−3 m3

If the pitcher were filled only up to the bottom of
the neck, the volume would be just the second term
from the calculation above:

Vhalf−full = 2.14 × 10−3 m3
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Looking at the shape of the container, we can see
that it takes very little additional water to com-
pletely fill the container once the sphere is full, and
yet that small amount of water is enough to double
the pressure at the bottom, because the neck is so
tall and narrow.

Now let’s consider another situation where the bot-
tom half of the pitcher is filled, the neck of the
pitcher is empty, and then a plug is pushed down
to the base of the neck and held down with an ex-
ternal applied force. This force creates an external
pressure on the water beneath it. That pressure is
added equally to every part of the liquid. This is
called “Pascal’s Law.”

This principle is used in hydraulic systems. If a
force is applied to a small area of the liquid in a
closed system, it creates a large pressure increase
in all of the liquid. If the liquid goes to a movable
part of the system with a relatively large area, a
force is generated that is much larger than the force
applied to the small area.

We have already seen that systems of pulleys can
be used to create machines with a “mechanical ad-
vantage” larger than one. That means the output
force is larger than the input force. Hydraulic sys-
tems can behave in the same way if the area is
smaller for the input force than it is for the output
force.

0.08 m

0.08 m

Figure 10.8: Pressure in the half-filled pitcher[55]

Fapplied

0.08 m

Figure 10.9: Applied pressure on half-filled
pitcher[55]

Comparing these two volumes, we can see that the
neck holds very little water compared to the sphere
at the bottom.

According to Equation 10.1, the pressure created
by gravity in a liquid depends only on gravity, the
density of the liquid, and the height of the surface
above the point of interest. When filled, the pres-
sure at the bottom of the pitcher is:

Pfilled = ρm ⋅ g ⋅ h
= 1000 kg/m3 ⋅ 9.8m/s2 ⋅ 0.16m
= 1568 Pa

Similarly, the pressure at the bottom of the pitcher
when it only half-full is 784 Pa.

If an external force applies an additional pressure to
a liquid, the force increases by that same amount
of pressure, so that the total pressure becomes:

Ptot = ρm ⋅ g ⋅ h + Pexternal (10.2)

To make the pressure at the bottom of the half-
filled pitcher the same as that of the filled pitcher,
an external pressure of 784 Pa would need to be
applied to the liquid at the base of the neck. We
could find the amount of force that would need to
be applied to a plug in the neck of the pitcher to
create such a pressure. Rearranging our expression
for pressure…

F = P ⋅A

= 784 Pa ⋅ π ⋅ (0.01m)2

= 0.246 N

…which is exactly the weight of the water that fills
the neck of the pitcher.
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10.3 Floating and Sinking

Words

We have looked at liquids placed into containers.
Now we will look at solid objects placed into liq-
uids. Some objects sink and other objects float; the
determining factor for sinking or floating is density.
Materials with lower density tend to rise up and
those with higher density sink down.

The ingredients in the salad dressing shown in Fig-
ure 10.10 have separated themselves into layers
based on their densities: sugar with the highest
density on the bottom, then vinegar, garlic, oil,
and finally dried herbs with the lowest density on
the top. For our analysis we will use a simpler sit-
uation with just two materials each time: Either
water and ice or water and aluminum.

First we will consider a cube of ice 20 cm on each
side floating in fresh water. How much of the ice is
submerged below the surface of the water and how
much is above the surface? The densities of most
materials can be found using an internet search.

The ice cube is in equilibrium in this scenario, so
the net force must be zero. Gravitational force
acts downward, so some other force must be acting
upward to balance it. There is nothing like a rope or
a spring, so it can’t be tension force or spring force.
It isn’t sitting on a solid surface, so no normal force.
It isn’t a frictional force, either. This is a new
force that we haven’t considered yet, buoyant force.
Buoyant force is caused by gravity creating pressure
in the fluid around an object, creating a net upward
force on the object.

Graphics

Figure 10.10: Unmixed salad dressing, with
ingredients separated according to their densities
[1]

Fb

Fg

waterhsubmerged
ice

Figure 10.11: Free-body diagram of ice floating in
water, with the water level shown for clarity.[1]

Numbers

Assumptions: near the surface of the earth; water
and ice are incompressible

Knowns Unknowns
Vice = 0.2 × 0.2 × 0.2m3 Vsubmerged

ρm,water = 1000 kg/m3 mice

ρm,ice = 920 kg/m3

g = 9.8m/s2

We can rearrange the definition of mass density to
find the mass of the ice block:

mice = ρm,ice ⋅ Vice

= 920 kg/m3 ⋅ 0.2 × 0.2 × 0.2m3

= 7.36 kg

The ice is in equilibrium and we only need to con-
sider the vertical direction for forces, so…

Fnet,y = Fb − Fg = 0

Fb = Fg =mice ⋅ g = 72.1 N

The buoyant force is created by the upward pressure
of the water on the bottom of the ice, so using
Equation 10.1…

Fb = Pbottom ⋅Abottom

= (ρm,water ⋅ g ⋅ hsubmerged) ⋅Abottom

= ρm,water ⋅ g ⋅ Vsubmerged

…since the submerged volume is the submerged
height times the cross-sectional area.208



For a floating object, the buoyant force created by
the pressure in the fluid exactly balances the grav-
itational force on the object itself. This happens
when a volume of the liquid equal to the submerged
volume of the object has the same mass as the ob-
ject.

Now we will consider instead a 20 cm x 20 cm
x 20 cm block of aluminum sinking in fresh wa-
ter. What is the buoyant force on the aluminum?
Again, the buoyant force is created by the pressure
in the fluid, but this time there is fluid on all sides.
Since pressure increases with depth, the force up-
ward on the bottom is greater than the force down-
ward on the top. Because of this, the buoyant force
is always upward.

Much like in the case of the floating ice, the buoy-
ant force is related to the submerged volume of the
object (in this case the whole object), but this time
the buoyant force is smaller than the gravitational
force. That is because buoyant force is equal to
the weight of a volume of water equal to the vol-
ume of the object, and water has a lower density
than the object. As long as the object and the fluid
around it are incompressible, the buoyant force on
a completely submerged object does not change as
it sinks deeper into the liquid.

If the object sinks to the bottom of the liquid, for
example sitting on the bottom of a lake, the forces
are again balanced but in this case the buoyant
and normal forces together balance the gravita-
tional force.

water

aluminum

Figure 10.12: Pressure on a block of aluminum
sinking in water.[1]

Looking at Figure 10.12, we can see that the pres-
sure in the horizontal direction presses equally on
both sides of the block, canceling out. But the
pressure on the bottom of the block is larger than
the pressure on the top.

water

dirt

Fb

Fn Fg

aluminum

Figure 10.13: Free-body diagram of aluminum
sitting at the bottom of a lake.[1]

Assumptions: near the surface of the earth; water
and aluminum are incompressible

Knowns Unknowns
VAl = 0.2 × 0.2 × 0.2m3 Fb

ρm,water = 1000 kg/m3 mAl

ρm,Al = 2700 kg/m3

g = 9.8m/s2

In the case of a block that is completely submerged,
there is pressure at the top and the bottom. The
pressure at the top can be considered an external
pressure caused by the water above the block, and
using Equation 10.2 the pressure in the water at
the bottom becomes…

Pbottom = ρm,water ⋅ g ⋅ h + Ptop

The buoyant force would be the combined force
from the pressure on the top and the bottom. The
areas of the top and the bottom are equal, so…

Fb = Pbottom ⋅Abottom − Ptop ⋅Atop

= (Pbottom − Ptop) ⋅A
= ((ρm,water ⋅ g ⋅ h + Ptop) − Ptop) ⋅A
= ρm,water ⋅ g ⋅ h ⋅A
= ρm,water ⋅ g ⋅ Vsubmerged

This is the exact same result that we got for a
floating object. It is generally true for any object
in any fluid under the influence of gravity:

Fb = ρm,fluid ⋅ g ⋅ Vsubmerged (10.3)
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10.4 Flowing

Words

In our previous physical scenarios with liquids, the
liquid has always been stationary, so the focus has
been primarily on forces. Now we will allow the
liquids to flow, so we will begin to consider mo-
tion and energy. The scenario we will consider is
water flowing through a horizontal pipe with vary-
ing diameter: first with a diameter of 10 cm, then
narrowing to 5 cm, and finally returning to 10 cm.
The water enters the first part of the pipe flowing
to the right at 5 m/s at a pressure of 4× 105 Pa in
the center of the pipe.

We will assume for now that the water is an ideal
fluid; that is, the flow is smooth and constant and
there is no friction because only elastic collisions
occur within the fluid. We will also assume that
the fluid moves at the same speed across the entire
cross-section of the pipe at any given horizontal po-
sition. What is the speed and pressure of the water
at the center, top, and bottom of each section of
the pipe?

If we consider just the first section of the pipe,
the velocity of the water is constant, to the right.
The pressure increases with depth, so the pressure
at the bottom of the pipe would be higher than
4 × 105 Pa and the pressure at the top of the pipe
would be lower than 4 × 105 Pa.

The flow of a liquid can be described in terms of
the volumetric flux, that is, the volume of flow per
time, [m3/s]. In a pipe, the same volume of water
flows through each section of pipe, so the volumet-

Graphics

v1
5 m/s

v2 v3

∅ = 0.1m
∅ = 0.05m

∅ = 0.1m

Figure 10.14: Water flowing through a pipe with
varying diameter. “∅” is the symbol for
diameter.[1]

v1

v2

v3

Figure 10.15: Water flowing through a pipe with
varying diameter. Equal volumes are marked in
each section of pipe. Since the volumetric flux is
constant, it takes water the same amount of time
to pass through each marked region. That means
the speed has to be higher in the narrower part of
the pipe. [1]

Numbers

Assumptions: laminar flow; near the surface of
the earth; water is incompressible; ideal fluid

Knowns Unknowns
A1 = 7.85 × 10−3 m2 v2

A2 = 1.96 × 10−3 m2 v3

A3 = 7.85 × 10−3 m2 P1,top, P1,bottom

v1 = 5m/s P2,top, P2,center, P2,bottom

P1,center = 4 × 105 Pa P3,top, P3,center, P3,bottom

ρm,water = 1000 kg/m3

g = 9.8m/s2

The areas were found using A = π ⋅ r2.

Volumetric flux is given by:

ΦV = v ⋅A ⋅ cos θ (10.4)

…where v is the speed of the fluid, A is the area
through which the fluid is flowing, and θ is the
angle between the velocity and the normal vector
of the area. For flow through a pipe this angle is
zero. Volumetric flux is constant in all sections of
the pipe…

ΦV,1 = ΦV,2 = ΦV,3

v1 ⋅A1 = v2 ⋅A2 = v3 ⋅A3

Substituting in our known values, v3 is 5 m/s, the
same as v1, and v2 is 20 m/s.
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ric flux is the same for each. This means that the
speed of the water must be faster through the nar-
rower section of pipe, since the cross-sectional area
of that pipe is smaller.

The change in the speed of the water tells us that
the water accelerated to the right as it went from
the wider section of pipe to the narrower section.
So there must be a net force in the direction of
the flow when the pipe narrows. The only forces
in that direction are from the pressure in the fluid
itself. So the pressure in the narrow part of the
pipe must be lower than in the wider part of the
pipe. Then when the water passes into the third
part of the pipe, where it is wider again, the water
experiences an acceleration to the left, returning to
its original speed. So the pressure in the third part
of the pipe is the same as in the first part.

This may seem counter-intuitive, because many
people would tend to think that pressure must be
highest where the speed is highest. But remem-
ber that pressure is related to force. And we have
already learned that just because an object is mov-
ing at high speed does not necessarily mean that
there is a large force acting on the object. It just
means that for some period in the object’s history
there was a net force acting in the direction that
the object is currently moving. The same is true
here–a larger pressure from the first section of the
pipe caused the higher speed in the second section
of the pipe.

The reduction of pressure in places where a pipe
narrows is referred to as the “Venturi effect.”

Figure 10.16: The normal vector of an area points
directly out of the surface. [1]

v1
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v3

A1 A2 A3

l1 l2

Figure 10.17: This simplified model of water
flowing through a pipe makes it easier to find the
change in pressure as the water flows through it.
A volume of water, shaded with dots in the first
section of the pipe, flows to the right, so the same
water a short time later occupies the volume
shaded with a grid in the second section of the
pipe.[1]

Consider the volume of water in Figure 10.17 that
starts in the first section of pipe and moves to the
section section of pipe. Energy has to be conserved
unless external work is done on the water.

Wnet =∆E

The pressure in the first section of the pipe does
work pushing to the right for a distance l1 while
the pressure in the second section of the pipe does
work pushing to the left for a distance l2. This in-
creases the kinetic energy of the water. In addition
to these changes in the horizontal direction, any
change in the vertical direction creates a change
in gravitational potential energy. Combining these
three in an incompressible fluid gives “Bernoulli’s
Equation:”

(P + 1

2
ρm ⋅ v2 + ρm ⋅ g ⋅ h) is constant (10.5)

If we choose to set the height h = 0 at the center
of the pipe, we can find the constant value given
by Equation 10.5 for this system at the center of
the first section of pipe:

P1,center +
1

2
ρm,water ⋅ v21 + ρm,water ⋅ g ⋅ 0

= (4 × 105 Pa) + 1

2
(1000 kg/m3) ⋅ (5m/s)2 + 0

= 412500 Pa

This constant is valid anywhere in the pipe. At the
top of the second section of pipe, for example…

P2,top +
1

2
ρm,water ⋅ v22 + ρm,water ⋅ g ⋅ 0.025m

= 412500 Pa
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10.5 Intermolecular Forces

Words

Up to this point, we have only been dealing with
“ideal fluids,” in which the flow, if any, is smooth
and constant and the only interactions between the
molecules of the fluid or between the fluid and the
walls of a container are like elastic collisions.
Now we will introduce turbulent flow and viscos-
ity, which comes from attractive forces between
the molecules of the fluid and between the fluid
and the walls of a container.

For fluids traveling at relatively low speeds and un-
interrupted by obstacles, the fluid flow is laminar.
Laminar flow is when the fluid is moving along
smooth paths. At higher speeds or when obstacles
are introduced, fluid flow becomes turbulent. Tur-
bulent flow is when the flow is erratic, with mixing,
rotation, and chaotic changes in magnitude and di-
rection of the velocity. Laminar and turbulent flow
can both be seen in Figure 10.18 and are drawn
schematically in Figure 10.19.

Figure 10.19 shows laminar flow in a pipe for a
fluid with non-zero viscosity (so not an ideal fluid).
Viscosity can be thought of as how “thick” a fluid
feels. Honey, for example, has a high viscosity. For
this type of fluid, the speed is higher in the center of
the pipe. That is because frictional forces between
the pipe wall and the fluid cause the fluid at the
edges to slow to a speed near zero. The speed of
the fluid increases the further it is from the walls
of the pipe, so it is at a maximum in the center.

Graphics

Figure 10.18: The water is experiencing laminar
flow as it comes from the left and starts to fall
into the pool below. Once the water hits the pool
below, the flow becomes turbulent. [56]

Figure 10.19: Laminar flow is shown in the upper
pipe and turbulent flow in the lower pipe. [57]

Numbers

Assumptions: laminar flow; near the surface of
the earth; incompressible fluids

Knowns Unknowns
r = 0.002m ∆P

l = 0.026m
ΦV = 0.06 l/min

µv = 0.005 Pa ⋅ s
ρm = 994 kg/m3

g = 9.8m/s2

The volumetric flow rate for a viscous fluid in a pipe
is highly dependent upon the exact conditions. If
the flow in a pipe with a circular cross-section is
laminar and the pipe is neither too short nor too
wide then the volumetric flow rate is given by…

ΦV =
π ⋅ r4 ⋅∆P

8µv ⋅ l
(10.6)

…where r is the radius of the pipe, l is the length of
the pipe, and µv is the viscosity of the fluid. Before
solving Equation 10.6 for the change in pressure,
the flow rate needs to be converted to SI units:

ΦV = 0.06 l/min ⋅ ( 1m3

1000 l
) ⋅ (1min

60 s
)

= 1 × 10−6 m3/s
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Because of the frictional force that constantly op-
poses the motion of the fluid, motion would stop
unless there was a constant pressure difference be-
tween the two ends of the pipe. The volumetric
flow rate in a pipe depends on the pressure differ-
ence between the two ends of the pipe, the viscosity
of the fluid, the cross-sectional area of the pipe, and
the length of the pipe.

We will consider this effect in a brachial artery,
which carries blood to the arm. The brachial artery
has a diameter of approximately 4 mm and a length
of 26 cm. The flow rate is approximately 0.06 liters
per minute. The density of blood is approximately
994 kg/m3 and the the viscosity of blood is approx-
imately 0.005 pascal-seconds [Pa ⋅ s].

The analysis in the “Numbers” section shows that a
pressure difference of only 20.7 Pa is enough for the
blood to flow through the artery if the arm is hor-
izontal, but the heart needs to provide more than
ten times that amount if the arm is held straight up.
In fact, the heart has to provide enough pressure for
blood to flow through every artery, vein, and capil-
lary in the body–more than 10,000 Pa of pressure.
Blood pressure is usually measured in millimeters
of mercury. One millimeter of mercury is enough
pressure to raise a column of mercury against the
force of gravity by 1 mm.

Another effect of attractive intermolecular forces
between the molecules in a fluid is surface tension.
A drop of water tends to pull itself together as
much as possible into a shape like a ball. The
actual details of the shape change depending upon
the effects of gravity and the surfaces in contact
with the drop.

Figure 10.20: The brachial artery is the large
artery that runs through the upper arm. It is red
in this sketch from Gray’s Anatomy. [58]

Figure 10.21: Note how the smaller water droplets
form nearly perfect spheres on this lotus leaf,
while the larger drops are more deformed by
gravity. [59]

Now we can find the change in pressure.

∆P = 8µv ⋅ l ⋅ΦV

π ⋅ r4

=
8 ⋅ (0.005 Pa ⋅ s) (0.026m) (1 × 10−6 m3/s)

π ⋅ (0.002m)4

= 20.7 Pa

If the arm is horizontal, this change in pressure
needs to be provided by the heart. If the arm is
hanging down, then gravity provides a change pres-
sure given by Equation 10.2, taking Ptot to be the
pressure at the bottom and Pexternal to be the
pressure at the top:

∆P = Ptot − Pexternal

= ρm ⋅ g ⋅ h
= (994 kg/m3) ⋅ (9.8m/s2) ⋅ (0.026m)
= 253 Pa

…where the length of the artery is used as the
height since the artery is vertical. This is more
than enough pressure for the blood to flow through
the artery even without the heart pumping. But if
the arm is raised, the heart would have to provide
enough additional pressure to make the blood flow
upward against gravity.
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10.6 Water Waves

Words

If you have ever watched a wave move across a
body of water, whether in a teacup or on the ocean,
you have probably noticed that the water rises and
falls. When the wave is caused by something falling
into the water, the waves form rings that move
outward. When the wave is caused by wind, it
looks like long straight lines. Either way, the waves
look like transverse waves rising and falling.

In fact, they are more complicated than transverse
waves. Transverse waves travel easily through a
solid because of the strong forces that hold each
atom to all of its neighboring atoms. Liquids don’t
have such strong forces between atoms, so trans-
verse waves do not travel easily through liquids.

What if instead a longitudinal wave were intro-
duced into a body of water? This would cause
compression and rarefaction of the water molecules,
but water, like most solids and liquids, is nearly
incompressible. Solids cannot flow, so the incom-
pressibility makes longitudinal waves travel at very
high speeds through the material. But liquids can
flow, so if you try to compress the liquid in the
horizontal direction it will flow upward instead of
compressing. Then if you try to rarefy the liquid it
will flow downward. This creates a circling motion
in the water, as can be seen in Figure 10.23. The
circling motion is a combination of transverse and
longitudinal waves that is often simply referred to
as a water wave. Waves tend to travel more slowly
through liquids than through solids.

Graphics

Figure 10.22: Waves move outward from places
where water has dropped into the pool. Note that
the waves can pass through each other. [60]

Figure 10.23: Individual particles in a water wave
follow a near-circular path, moving both parallel
and perpendicular to the wave itself, which is
moving to the right in this image. [61]

A moving GIF of Figure 10.23 is viewable at
https://commons.wikimedia.org/wiki/
File:Deep_water_wave.gif.

Numbers

Knowns Unknowns
d = 0.02m θnode 0

λ = 0.01m θantinode 1

θnode 1

The angles θnode 0, θantinode 1, and θnode 1 are il-
lustrated in Figure 10.25.

For interference between two point sources, the an-
gles for the antinodes where destructive interfer-
ence occurs can be found by using the following
relationship:

m ⋅ λ = d ⋅ sin θantinodem (10.7)

…where m is an integer (0, ±1, ±2, etc.), λ is
the wavelength, and d is the distance between the
sources of the waves.

If we choose m = 0, this gives an angle θ = 0. That
direction corresponds to directly in front of the bee
in Figure 10.24 or directly above the point sources
in Figure 10.25, and in both of these cases we can
see that the waves are strong in those directions.

Solving Equation 10.7 for θ using m = 1 gives the
angle θantinode 1 = 30○, which looks like a reason-
able answer if we compare to Figure 10.25.

Using m = −1 would give a negative angle–this
would simply refer to the same antinode on the
other side of the vertical line in Figure 10.25.
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Like other kinds of waves, water waves can inter-
fere with each other. In Figure 10.22, the waves
pass through each other, as we have seen before
with longitudinal and transverse waves in solids. In
Figure 10.24, the waves are created in two places
very close to each other and in a regular pattern.
This creates a situation where the interference be-
tween the waves created by the bee’s wings makes
a complex pattern.

There are large ripples coming away from the bee in
some directions (for example, the direction marked
with a dotted line in Figure 10.24). These are the
places where the waves created by the two wings
are interfering constructively. But the water is al-
most smooth in other directions (for example, the
direction marked with a solid line in the same fig-
ure). These are the places where the waves created
by the two wings are interfering destructively.

For the analysis of this pattern around the bee,
we will assume that the distance between the cen-
ters of the wings is 2 cm. Looking carefully at
the image, that means the wavelength of the wa-
ter waves is approximately 1 cm. This pattern is
reproduced in Figure 10.25 by creating concentric
circles of white and black around two closely spaced
positions.

The result is a series of nodes (where the wave
amplitude is near zero) and antinodes (where the
wave amplitude is at a maximum) radiating from
the center point between the two sources of the
waves.

Figure 10.24: A bee beating its wings in water,
showing constructive (dotted lines) and
destructive (solid lines) interference. [62]

dλ

θnode 0

θantinode 1

θnode 1

Figure 10.25: This image represents waves with
wavelength λ spreading out in circles from two
starting positions separated by a distance d.[1]

For the nodes where destructive interference oc-
curs, the mathematical relationship is very similar:

(m + 1

2
) ⋅ λ = d ⋅ sin θnodem (10.8)

…where again m is an integer (0, ±1, ±2, etc.), λ
is the wavelength, and d is the distance between
the sources of the waves.

This time if we choose m = 0 we find an angle
for the “zeroth” node λnode 0 = 14.5○, which again
looks like a reasonable answer if we compare to
Figure 10.25.

If we choose m = 1, we find that λnode 1 = 48.6○,
which again looks like a reasonable answer.

Every configuration of point sources will have only
a limited number of valid solutions for the vari-
able m in the mathematical models given here.
The number of valid solutions depends on the rel-
ative spacing of the point sources compared to
the wavelength. In this situation, if we try to use
m = 2 to find the next node λnode 2, we find that
sinλnode 2 = 1.25, but there is no angle for which
sin is greater than one. But that’s ok–on Figure
10.25 there isn’t another node visible at an angle
larger than λnode 1 = 48.6○. There is no mathemat-
ical solution for another node because there is no
other node.
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10.7 Summary

Chapter summaries in this book are ordered by concept, not necessarily in the order in which they are
presented in the chapter. Mathematical models are grouped together at the end of each summary. See the
appendices for the meanings of all symbols used in this book.

General

• The molecules of a liquid are free to move around while still staying close together.

• Most liquids are not easily compressed, so we will consider them to be completely incompressible.

• Liquids are a type of fluid.

• Fluids can flow and change shape, usually to fit the shape of a container.

• Materials with lower density tend to rise up and those with higher density sink down.

• Ideal fluids are those for which the flow, if any, is smooth and constant and only elastic collisions
occur between the molecules of the fluid or between the fluid and the walls of a container.

• Water waves can interfere with each other.

Forces

• The pressure in a fluid depends on gravity, the density of the fluid, the depth, and the speed of the
fluid.

• The pressure in a fluid pushes out in all directions.

• If an external force is applied to a fluid, the pressure caused is added equally to every part of the fluid.

• Buoyant force is caused by the pressure in a fluid around an object.

• Buoyant force always points upward.

• An increase in the speed of horizontal flow in a fluid happens along with a decrease in the pressure
of the fluid.

• Attractive intermolecular forces in a fluid creates surface tension, pulling the liquid together as much
as possible into the shape of a ball.

Motion

• Volumetric flux is the volume flow per time.

• The volumetric flux in a pipe is constant throughout the length of the pipe.

• Water flows faster through narrower sections of a pipe.

• Laminar flow is when the fluid is moving along smooth paths.

• Turbulent flow is when the flow is erratic, with mixing, rotation, and chaotic changes in magnitude
and direction of the velocity.

• For laminar flow, speed is highest in the center of the flow and lowest at the edges.



• Waves in a liquid are usually a combination of longitudinal and transverse waves, often referred to as
“water waves.”

Momentum

• (Nothing!)

Energy

• (Nothing!)

Mathematical Models

equation restrictions on the validity of the equation

P = ρm ⋅ g ⋅ h (10.1) no flow, no external pressure, near the surface of the earth

Ptot = ρm ⋅ g ⋅ h + Pexternal (10.2)
no flow, near the surface of the earth

“Pascal’s Law”

Fb = ρm,fluid ⋅ g ⋅ Vsubmerged (10.3)
near the surface of the earth

“Archimedes’ Principle”

ΦV = v ⋅A ⋅ cos θ (10.4) -none-

P + 1
2
ρm ⋅ v2 + ρm ⋅ g ⋅ h is constant (10.5)

within a single, steady flow with no friction
“Bernoulli’s equation”

ΦV = π⋅r4⋅∆P
8µv ⋅l

(10.6)
long, narrow, round pipe with laminar flow

“Poiseuille Flow”

m ⋅ λ = d ⋅ sin θantinodem (10.7) -none-

(m + 1
2
) ⋅ λ = d ⋅ sin θnodem (10.8) -none-



10.8 Questions

Questions are ordered according to Bloom’s Taxonomy, progressing from regurgitating information (Level
1) to synthesizing new information with previous knowledge to create something new (Level 6). The bold
letters at the beginning of each question indicate whether the question involves Words [W], Graphics [G],
and/or Numbers [N]. See the appendices for conversion factors.

Level 1 - Remember

10.1 [W] What are the main differences between a solid and a liquid at the molecular level?

10.2 [W] What is meant by “incompressible?”

10.3 [W] After a solid object is completely submerged in a liquid, how does buoyant force change as the
object sinks deeper, assuming that the object and the fluid are both incompressible?

10.4 [W] What kind(s) of waves can travel easily through a liquid?

10.5 [W & N] Add labels to each equation in the “Mathematical Models” section of the summary that
tell what the symbol to the left of the = sign represents.

Level 2 - Understand

10.6 [W] What happens to pressure as you move down deeper into a fluid?

10.7 [W] What happens to pressure in one part of a fluid if you increase the pressure on the fluid in another
part of it?

10.8 [W] Is there any situation where buoyant force points downward? If so, give an example.

10.9 [N] A steady volumetric flow of 2 liters per second enters a garden hose with a diameter of 2.5 cm.
Just before the water comes out of the other end of the hose, a nozzle reduces the diameter to 0.5 cm.

(a) What is the magnitude of the volumetric flow out of the nozzle?
(b) Is the pressure in the nozzle higher, lower, or equal to the pressure in the hose? Assume that

the hose is horizontal.

Level 3 - Apply

10.10 [W & N] Use the information in Section 10.3 to calculate the specific gravity of ice.

10.11 [W] What causes pressure to increase as you move down deeper into a fluid?

10.12 [N] What is the pressure 10 m below the surface of a 40-m-deep freshwater lake?

10.13 [W & G] The image below shows an oddly-shaped container filled with a liquid. Be specific about
the locations in your answers.

(a) Where in the liquid would the pressure be highest?
(b) Where in the liquid would the pressure be lowest?



A series of ”communicating vessels” that form a single, oddly-shaped container.[63]

10.14 [N] One of the unknowns in Section 10.3 is the submerged volume of the floating ice. Use the buoyant
force that was determined using the free-body diagram to solve for the submerged volume of the ice.
What fraction of the ice is submerged? Compare this fraction to the specific gravity of ice.

10.15 [N] One of the unknowns in Section 10.3 is the mass of the aluminum cube. Calculate the mass of
the cube.

10.16 [N] One of the unknowns in Section 10.3 is the buoyant force on the aluminum cube. Calculate the
buoyant force…

(a) …if the cube is still sinking, as illustrated in Figure 10.12.

(b) …if the cube is sitting on the bottom of the lake, as illustrated in Figure 10.13.

10.17 [N] In Section 10.4, none of the unknown pressures is found. Calculate them.

10.18 [G] A curved section of pipe is shown in the image below. Make two sketches of water flowing through
this pipe: One with laminar flow and one with turbulent flow.

A curved section of pipe.[1]

10.19 [N] In Section 10.6 it was shown that there is no solution for an m = 2 node. Is there a solution for
an m = 2 antinode?

Level 4 - Analyze

10.20 [N] How tall would a column of water need to be to apply the same pressure to the ground as the
column of sandstone in Section 10.1?

10.21 [N] How tall would a column of mercury need to be to apply the same pressure to the ground as the
column of sandstone in Section 10.1? The density of mercury, which is a liquid at room temperature,
is 13500 kg/m3.

10.22 [W & N] The image below shows a measuring cup with a sealable spout. The spout has been sealed
such that the level of liquid (assumed to have the same density as water) in the spout is 1 cm below
the level of liquid in the main body of the measuring cup. How much external pressure is the seal
applying to the liquid?



A measuring cup with two different levels of liquid.[1]

10.23 [N] A hydraulic lift is used to raise a 2 500 kg truck off of the floor in a repair shop. The total area
of the four cylinders that are actually lifting the truck is 0.5 m2. The external pressure applied to the
liquid is created by a cylindrical piston with a radius of 0.03 m. How much force does the piston need
to use to lift the truck?

10.24 [W, G, & N] A 1-cm-radius solid ball of lead is dropped into a deep pool of mercury.

(a) What is the volume of the lead ball?

(b) Look up the density of lead and use it to calculate the mass of the lead ball.

(c) Look up the density of mercury. Does the lead ball sink or float?

(d) Draw a free-body diagram of the lead ball.

(e) Find the buoyant force on the lead ball.

(f) Find the submerged volume of the lead ball.

10.25 [W] We considered examples where the magnitude of the buoyant force was equal to or less than the
force of gravity. Is it possible for buoyant force to be greater than the force of gravity? If so, give an
example. If not, explain why not.

10.26 [N] Consider a horizontal pipe carrying a liquid with high viscosity. What would happen to the
volumetric flow rate if everything else remained unchanged except that…

(a) The radius of the pipe doubled?

(b) The length of the pipe doubled?

(c) The pressure difference doubled?

(d) The viscosity of the liquid doubled?

10.27 [W] “Pitot tubes” like the one in the figure below are used on aircraft to measure the windspeed
of the airplane. A Pitot tube depends on the Venturi effect. The Pitot tube has one opening pointing
forward on the airplane, and another on the side of the tube. A sensor is used to measure the pressure
difference at these two positions. Based on what you know about pressure and fluid flow, explain
which of the two openings would be at a higher pressure.
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A Pitot tube on the bottom side of an airplane wing.[64]

10.28 [N] If the distance between two point sources was increased, would the number of possible nodes and
antinodes increase, decrease or stay the same? Explain your reasoning.

Level 5 - Evaluate

10.29 [G & N] Create a line graph that shows the pressure in the column of water in Figure 10.5 as a
function of height off of the ground. Note that the height off of the ground is not the same as “h”
in the figure. The total height of the column of water is 8 m.

10.30 [W, G, & N] Question 10.23 asks about a hydraulic lift that is used to lift a truck. The force needed
to lift the truck is very large, but the force that is supplied by the piston to do this is very small in
comparison. Work is done on the truck to lift it off of the ground. That work can only be supplied by
small force created by the piston. Does this hydraulic lift violate conservation of energy? If so, could
such a machine actually exist? If not, explain how such a large force can be used to do work when
the only input is a relatively small force.

10.31 [W, G, & N] In Figure 10.10, pieces of garlic have sunk through the oil and are floating on the surface
of the vinegar. Look up densities of vinegar and olive oil. Assume that the garlic is half submerged
in olive oil and half in vinegar in its equilibrium position. If that assumption is correct, what is the
density of the garlic?

10.32 [W] Oil floats on top of water because water is more dense than oil. Use an argument based on
potential energy and stable equilibrium to explain why the less dense material floats on top of the
more dense material.

10.33 [W, G, & N] In Section 10.4, a pipe with varying thickness is analyzed, with the conclusions that the
flow rate would be equal in each section, the pressure in the first and last sections would be equal,
and the pressure would be lowest in the center section. Are each of these conclusions still valid if the
fluid flow is laminar but the fluid has a high viscosity?

(a) Is the volumetric flow still equal for all three sections of pipe? If not, where is volumetric flow
highest or lowest?

(b) Is the pressure in the third section of pipe still the same as in the first section? If not, is it lower
or higher?

(c) Is the pressure in the center section still lower than for the other sections of pipe?

10.34 [N] If the wavelength of a water wave was 2 m, what minimum distance would two point sources
need to be away from each other in order to create nodes where m = 5?



Level 6 - Create

10.35 [W, G, & N] At the beginning of Chapter 1 in Figure 1.1 was a template for a concept map. Add
the main ideas from this chapter to a similar concept map that is specifically for liquids.

10.36 [W, G, & N] Imagine you are writing a test question related to this chapter. Think of your own
example of a situation that you can analyze using the concepts, graphics, and mathematical analyses
described in this chapter. Describe the situation, and use the tools from this chapter to analyze the
situation as completely as you can, including motion, forces, energy, and momentum.

10.37 [W, G, & N] Think about possible misconceptions about the material in this chapter. Write a
question and an incorrect solution to it that demonstrates a student making such a conceptual error.
This cannot be a simple misuse of a vocabulary word, a unit error, or a mathematical error like
making an addition error or multiplying when addition was needed, unless the error is rooted in a real
misunderstanding about the physics behind the calculation or the misuse of a word. After you have
written the question and incorrect solution, explain what is wrong with the student’s solution, and
write a correct solution to the problem. Note: You may use a question from this chapter that you
got wrong the first time, and explain the initial error in your thinking and how you corrected it.
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Chapter 11

Gases

Figure 11.1: The air pressure in the tires has to be
enough to hold up the heavy load on the bike.[65]

We have already learned about liquids, which are
one type of fluid. Now we will focus on a second
type of fluid: gases. In the chapter on liquids
it may have seemed that the words “fluid” and
“liquid” were used interchangeably. In fact, they
were not. Each time the word “fluid” was used in
that chapter, the ideas that were being discussed
were equally applicable to gases.

The molecules in a solid are held together with
strong bonds; the bonds between molecules in
a liquid are weaker than those for a solid; the
bonds between the molecules of a gas are ex-
tremely weak. We will only consider ideal gases,
for which there are no attractive forces at all be-
tween the molecules. As a result, the particles
of an ideal gas tend to bounce around freely, and
unlike liquids they are compressible.

We will look at the motion of gas particles on a
molecular level and how the number of molecules
and the volume of the gas are related to pres-
sure. We will also consider work done by a gas
and sound waves traveling through a gas, includ-
ing the Doppler effect.



11.1 An Ideal Monatomic Gas

Words

Our model for a gas will be molecules that bounce
around freely through space, interacting with each
other only through collisions. With liquids we be-
gan by studying ideal liquids that had no viscosity,
and then later added viscosity. For gases we will
only consider ideal gases.

An ideal gas is one in which:

• molecules of the gas interact with each other
only through perfectly elastic collisions

• size of the molecules of an ideal gas is negli-
gible compared to both the size of the con-
tainer and the average distance between gas
molecules

• all of the gas molecules are identical

We will focus almost completely on “monatomic”
gases–that is, gases where each particle is com-
posed of a single atom like helium or neon. Our
atmosphere is mostly nitrogen, which is a diatomic
gas since each nitrogen gas molecule is composed
of two nitrogen atoms, so later we will also consider
diatomic gases.

Let’s begin with a single helium atom bouncing
around in an otherwise empty box that is 0.1 meter
long on each side. We will use the average speed
of a helium atom in our atmosphere, approximately
1350 m/s. How much average pressure does the
atom apply to the box?

Graphics

l

l

l

v

m

Figure 11.2: A single atom of a monatomic ideal
gas with mass m bouncing back and forth with
speed v in a box whose sides all have the same
length l.[1]

In the figure above, the size of the atom has been
vastly exaggerated. An actual helium atom has a
radius of approximately 1× 10−14m, so this helium
atom is shown approximately 10,000,000,000,000
times larger than it should be! Remember, this
is one of the requirements for an ideal gas, that
the size of the molecules themselves is very, very
small compared to other distances in the physical
scenario.

Numbers

Assumptions: ideal gas; ignore gravity

Knowns Unknowns
l = 0.1m Pavg

v = 1350m/s
m = 6.7 × 10−27 kg

We are looking for a pressure, which is a force per
unit area. The atom is striking the walls of the box,
and we can find the area of the surface it is hitting.
Since we are looking for an average pressure, not
just the pressure at one location, we should use
the entire surface area of the box. It has six square
walls, so…

A = 6 ⋅ (l ⋅ l) = 0.06m2

Now we need to find the average force. Force is
a change in momentum over time. Each time the
atom hits a wall it reverses direction, so there is a
change in the sign of its momentum. So each col-
lision creates a change in momentum with a mag-
nitude of…

∆p =m ⋅ (v − (−v)) = 2m ⋅ v = 1.8 × 10−23 kg ⋅m/s

…pointing toward the center of the box. We can
use the path length s and the speed v to find the
time ∆t between collisions with the walls:

∆t = s

v
= 0.1m

1350m/s
= 7.4 × 10−5 s
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If the atom only interacts with the walls of the
container with elastic collisions and it starts out
moving as shown in Figure 11.2, it will continually
bounce back and forth, hitting the right and left
walls over and over again at regular intervals. That
means the atom will apply an average outward force
on each of these walls. If we ignore the effects of
gravity it will never hit the bottom, and it will also
never hit any of the other walls. So perhaps our
model is a little bit too simple. Let’s add two more
atoms, one bouncing up and down and the other
bouncing forward and back while the original atom
continues to bounce left and right.

In fact, this is also an unrealistically small num-
ber of gas particles in a volume of this size. In
a real gas, the atoms are colliding with each
other, not just with the walls of the container, so
they are scattering around randomly in all differ-
ent directions. These constant collisions at vari-
ous angles also mean that the speeds of individual
gas molecules change often, although the average
speed remains constant. Because of these constant
changes, when we deal with gases we are really al-
ways talking about average values, not values that
are correct for any given gas particle.

The pressure in the box increases proportionally
with the number of gas molecules. To give a sense
for the huge numbers of atoms involved when talk-
ing about gases, if we added a million helium atoms
to this box every second, and we had started adding
them at the time when the universe was created,
the pressure in the box would only now be reaching
the same pressure as earth’s atmosphere!

l

l

l

Figure 11.3: Three atoms of a monatomic ideal
gas with mass m bouncing around with speed v in
a box whose sides all have the same length l.[1]

This relationship between path length, time, and
speed has not appeared before as a mathematical
model in this text, although you worked it out for
yourself when learning about units way back in Sec-
tion 2.1. It is valid whenever you want to find the
average speed over a given path:

vavg =
s

∆t

Now that we have the time between collisions with
the walls and the change in momentum of the atom
in each of those collisions, we can find the average
force:

Favg =
∆p

∆t
= 2.4 × 10−19 N

Since the force of the walls on the atom is equal
in magnitude and opposite in direction to the force
of the atom on the walls, we can find the average
pressure created by the atom on the walls:

Pavg =
Favg

A
= 2.4 × 10−19 N

0.06m2
= 4.0 × 10−18 Pa

If the number of atoms were increased to three, col-
lisions with the walls would happen three times as
often, so the pressure would triple. This shows that
when the volume and the speed of the molecules
remains the same the pressure is proportional to the
number of molecules of gas. Atmospheric pressure
on earth is 1.01×105Pa, so the box in this scenario
would need to contain approximately 4×1023 atoms
of helium to be at atmospheric pressure. That’s
400,000,000,000,000,000,000,000 atoms!
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11.2 Pressure and Volume

Words

What happens to the pressure when we reduce the
volume of an ideal monatomic gas? We can use the
same scenario as at the end of Section 11.1 with
three helium atoms, but this time we will reduce
the height of the box from 0.1 m to 0.05 m.

For the two atoms that are moving horizontally,
either left and right or forward and back, nothing
has really changed. But the atom that is moving
vertically now runs into the walls of the container
twice as often, since it is moving at the same speed
as before but only can only go half of the distance.

Since the atom that is moving vertically hits the
walls twice as often as before, the average force
and therefore the average pressure that this atom
exerts on the walls of the container has doubled
since the volume was reduced by half.

The atoms that are moving horizontally still travel
the same distance, applying the same amount of
average force to the side walls as they did before.
But they also apply twice as much pressure as be-
fore, because the areas of the walls they are hitting
has decreased, and pressure is force per area.

Our simple model accurately predicts what happens
when volume is reduced while keeping the speed of
the molecules constant: a smaller surface area and
a higher rate of collisions combine to increase the
pressure in a way that is inversely proportional to
the change in volume. So the pressure doubles if
the volume decreases by half.

Graphics

l

l/2

l

Figure 11.4: Three atoms of a monatomic ideal
gas with mass m bouncing around with speed v in
a box with one side half the length of the other
two sides.[1]

Figure 11.5: A scuba diver blowing bubbles.[66]

Numbers

Assumptions: ideal gas; average speed of molecules
is constant

Knowns Unknowns
Vi = 6 liters Vf

Patm = 1.01 × 105 Pa
ρm,seawater = 1026 kg/m3

hi = 40m
hf = 0m
g = 9.8m/s2

Technically, liters are not SI units. But they are
commonly used throughout the world (just about
everyone, even in the USA, knows how big a 2-
liter bottle is). Since we are given a known volume
in liters and we are looking for a volume, in this
situation we will find the answer in this same non-SI
unit. The SI unit for volume is m3, and the density
is given with this unit, so we will need to be careful
to make sure our units are canceled correctly as we
work through the question.

The density of seawater was found with an online
search; the same can be done for atmospheric pres-
sure, or the value can be found in Appendix C.
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Pressure can affect volume in the same way that
volume affects pressure. Let’s consider the volume
of the air bubbles exhaled by a scuba diver. Air
is not an ideal gas, since it is composed of dif-
ferent types of molecules, most of which are not
monatomic. But ideal gas laws still work remark-
ably well for any gas in most situations. The rec-
ommended maximum depth for conventional scuba
diving is 40 meters, and the average lung capacity
of an adult human is approximately six liters. If a
diver exhales six liters of air in the ocean at a depth
of 40 meters, what will the volume of the exhaled
air be as it reaches the surface?

To a good approximation, pressure under water in-
creases by one atmosphere every ten meters. So
at a depth of 40 meters the pressure would be
about five times the pressure at the surface. And
since volume is inversely proportional to pressure
that means the volume of the exhaled air would in-
crease by roughly a factor of five from the time it
leaves the diver’s lungs until it reaches the surface.
That means the volume of the air at the surface
would be nearly half the volume of the diver’s en-
tire body! This explains why divers are taught not
to hold their breath while surfacing, but to contin-
ually breathe out.

Figure 11.6: Sketch of the scuba diver blowing
bubbles. [1]

There is a lot of information that we don’t know, for
example the types of gas molecules and the num-
ber of each. But remembering that pressure and
volume are inversely related, as long as the num-
ber and type of molecules and the average speed of
the molecules all remain constant, we can use this
simple relationship between pressure and volume:

Ptot,1 ⋅ V1 = Ptot,2 ⋅ V2 (11.1)

This relationship is referred to as “Boyle’s Law.”

At the surface of the water, the depth is zero so
the final pressure is just that of the atmosphere,
1.01 × 105 Pa. At the depth of the diver, the sea-
water is pressing down on the exhaled air, so the
initial pressure is given by Pascal’s Law:

Pi = ρm,seawater ⋅ g ⋅ hi + Patm

= (1026 kg/m3) ⋅ (9.8m/s2) ⋅ (40m) + Patm

= 5.03 × 105 Pa

Now we can rearrange Equation 11.1 to find the
final volume:

Vf =
Pi ⋅ Vi

Pf

=
(5.03 × 105 Pa) ⋅ (6 liters)

1.01 × 105 Pa
= 30 liters
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11.3 Gauge Pressure

Words

If you have used a bicycle or a car, you have likely
put air in the tires. Before air is added to a new
tire, it is already full of air at the same pressure
as the surrounding atmosphere. But even though
the tire actually contains 1.01×105Pa of pressure,
if you put a tire pressure gauge on it the gauge
will read “0.” That is because the gauge does not
measure the total (or “absolute”) pressure in the
tire–it measures the “gauge pressure,” the pressure
difference between the inside and the outside.

Whether it is better to think in terms of gauge pres-
sure or absolute pressure depends on the scenario.
If our concern is that a balloon may pop if we try
to put too much air into it, then the important fac-
tor is the difference between the pressure inside the
balloon and the pressure outside of the balloon.

When thinking about the volume of the scuba
diver’s bubbles, it was the absolute pressure that
was important, because the volume of the bubble
depended on the spacing of the air molecules them-
selves, not on how that spacing would compare to
the spacing of the air molecules outside of the bub-
bles.

Absolute pressure is always positive, because every
time a molecule inside a container bounces off of
one of the walls it creates an outward force on the
wall. But gauge pressure is the difference between
two pressures, so it could be positive, negative, or
zero.

Graphics

Figure 11.7: Three boxes containing a gas,
surrounded by the same gas. The density of gas
molecules in the center box is the same as the
density of gas molecules outside of the boxes. [1]

The total (or absolute) pressure is positive inside
each box. But the gauge pressure is negative in
the top box, zero in the center box, and positive in
the bottom box.

Numbers

Assumptions: rectangular area; same pressure in
each tire; same area for each tire; at sea level

Knowns Unknowns
msystem = 198 kg P

Afront = Aback = 0.002m2

g = 9.8m/s2

Patm = 1.01 × 105 Pa

If we remember that pressure is force per area then
mathematically it is relatively easy to find the pres-
sure for one of the tires:

P = F

A

=
1
2
Fg

Aback

=
1
2
msystem ⋅ g
Aback

=
1
2
(198 kg) ⋅ (9.8m/s2)

0.002m2

= 4.85 × 105 Pa

We can check to see if this is a reasonable answer by
doing a quick internet search of bike tire pressure.
The maximum pressure for a medium bike tire is 70
psi, or 70 pounds per square inch. That converts
to 4.8×105Pa, so these tires are right on the edge
of being overinflated.

228



Let’s consider a bicycle in the picture at the be-
ginning of this chapter, assuming that the bicycle
is moving at constant speed, carrying a person and
three bags of charcoal. The bike’s mass is 8 kg, the
person’s mass is 70 kg, and the mass of each bag
of charcoal is 40 kg. We will take the area of the
ground touched by each tire to be approximately a
2 cm by 10 cm rectangle. We can use this informa-
tion to find the air pressure (assumed equal) in the
tires. We also need to remember to state whether
the pressure we have found is the gauge pressure
or the absolute pressure.

If we think of the bike, rider, and charcoal as a
single system, all of its weight is pressing down on
the road, and the road is pushing back up on the
system with the same amount of force. If we now
think of just that part of the tires that is touching
the road, the road pushes up on the tires and the
air inside the tires pushes down. So the pressure on
this part of the tires has to be equal to the weight
of the bike. The higher the pressure is in the tires,
the smaller the area that would have to be touching
the ground.

Should we be thinking about gauge pressure or ab-
solute pressure? That depends on whether atmo-
spheric pressure is pushing upward on the bottom of
the tire while it is touching the road. Unless some-
thing has been done specifically to remove the air
from under the tire, then there is still atmospheric
pressure there, so it is the gauge pressure that we
should be considering. To convince yourself of this,
think about picking up a suction cup that is just
sitting on a smooth surface, compared to picking
up the same suction cup after air has been pressed
out from underneath.

Figure 11.8: Sketch of the bottoms of the two
bike tires, including the forces on each of them.
[1]

If we assume that each tire is supporting half of the
weight then we can just think about the pressure
and forces for one tire and then apply the same
answer to both tires. In the text it said we are
assuming that the area touching the ground is a
rectangle, but it is shown in the sketch as more of
an ellipse, which is probably more accurate.

In our calculation we did not take into considera-
tion the outside pressure of the atmosphere pushing
up on the bottom of the tire, so our number is the
gauge pressure of the tire. To find the total pres-
sure in the tire we would have to add the external
pressure to the gauge pressure:

Ptot = Pexternal + Pgauge (11.2)

In this situation the external pressure is atmospheric
pressure, so…

Ptot = Patm + Pgauge

= 1.01 × 105 Pa + 4.85 × 105 Pa
= 5.86 × 105 Pa
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11.4 Temperature of Ideal Gases

Words

Gases are made up of huge numbers of particles
that are bouncing around randomly in every direc-
tion. Their positions and velocities are constantly
changing as they collide with each other and with
the walls of the container. And yet one of the
assumptions we have been using a lot is that the
average speed of the gas particles doesn’t change.
But how can we possibly know that is true, or have
any control over it? The answer is simple: temper-
ature.

The average velocity of the gas particles increases
as the temperature increases. Since the velocity
increases, the particles hit the sides of the container
with higher force, increasing the pressure. If the
walls of the container are able to move then the
walls could be pushed out, increasing the volume.
Or if there is a way for gas particles to enter and
exit the container then particles will tend to leave
the container, decreasing the number of particles
in the container. So with a gas there are multiple
factors that all affect the way the gas behaves.

Let’s consider what happens when the temperature
of the gas inside a 2 200-cubic-meter hot air bal-
loon is heated to 80○C and the outside air is 15○C.
The density of air at sea level when the temper-
ature is 15○C is approximately 1.23 kg/m3. The
total mass of the balloon itself, including a basket
holding two passengers but not including the air
inside the balloon, is 400 kg.

Graphics

Figure 11.9: Hot air balloons are filled with air
that is at a higher temperature than the
surrounding air. [67]

The higher speed of the air molecules inside the
balloon create a higher pressure. Since the bottom
of the balloon is open, the higher pressure inside
tends to push air molecules out of the bottom of the
balloon. This reduces the density of the air inside
the balloon, creating an upward buoyant force on
the balloon.

Numbers

Assumptions: ideal gas; volume of the basket is
negligible; no air resistance; atmospheric pressure

Knowns Unknowns
V = 2,200m3 Fnet

Toutside = 15○C
Tinside = 80○C
ρoutside = 1.23 kg/m3

mballoon = 400 kg

The ideal gas law describes the relationship be-
tween the total pressure Ptot, volume V , number
of molecules N , and temperature T of an ideal gas:

Ptot ⋅ V = N ⋅ kB ⋅ T (11.3)

kB is the Boltzmann constant, 1.38 × 10−23 J/K.
Celsius [○C] and kelvin [K] are both SI units for
temperature, but only kelvin can be used with the
ideal gas law. We can convert temperatures as
follows:

TK − 273K = TC =
5

9
(TF − 32○F) (11.4)

…where TK , TC , and TF are temperature mea-
sured in kelvin, Celsius, and Fahrenheit, respec-
tively. Note that the degree symbol is used only
with Celsius and Fahrenheit, not with kelvin.

230



Since the hot air balloon is open at the bottom,
gas particles can flow in and out. That keeps the
pressure inside the balloon the same as the pressure
outside. The balloon also stays the same volume
as the air inside gets warmer or cooler. So when
we increase the temperature of the air inside some
of the air will flow out of the balloon, decreasing
the number of air molecules inside. That means
the air inside the balloon is less dense than the air
outside of the balloon.

Remember that gases are fluids, so the buoyant
force that we learned about when studying liquids
is also relevant here. The less-dense balloon is com-
pletely submerged in the more-dense air outside of
the balloon, so that creates a buoyant force that
pushes the balloon upward.

Figure 11.10: Forces on the hot air balloon,
assuming no air resistance. [1]

First, we should convert temperatures to kelvin:
Toutside = 288K; Tinside = 353K

There are two forces we need to find: gravitational
and buoyant. Buoyant force is present in any fluid,
not just liquids, and we can think of the balloon
as being completely submerged in the air. Using
Archimedes’ Principle…

Fb = ρm,fluid ⋅ g ⋅ Vsubmerged

= (1.23 kg/m3) ⋅ (9.8m/s2) ⋅ 2,200m3

= 26500 N

To find the gravitational force, we need to know
the mass of the balloon. We are given the mass of
everything except the air, so we just need to find
the mass of the hot air inside the balloon. Looking
at Equation 11.3, we can see that if the pressure
and the volume are constant, as they are in this
case when the container is open at one end, then
the number of molecules of the ideal gas is inversely
proportional to the temperature. And since all of
the molecules of an ideal gas are identical, that
means the mass is also inversely proportional to
the temperature. So the gravitational force on the
80○C air inside the balloon is…

Fg,air =m80○C ⋅ g =m15○C ⋅
Tinside

Toutside
⋅ g

…where m15○C is the mass of the air inside the
balloon if it were at 15○C. We can find that mass
from the volume of the balloon and the density of
the outside air.

Fg,air = ρoutside ⋅ V ⋅
Tinside

Toutside
⋅ g = 21600 N
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11.5 Sound Waves

Words

We found that transverse and longitudinal waves
can travel through solids; and a combined trans-
verse/longitudinal wave, commonly called a wa-
ter wave, can travel through liquids. Transverse
waves require an attractive force between neigh-
boring particles, so transverse waves cannot travel
through ideal gases at all. Longitudinal waves,
however, can travel through gases; they are com-
monly called sound waves.

Compression and rarefaction is created in the gas
molecules that bounce off of an oscillating surface.
These areas of compression and rarefaction move
away from the surface as pressure waves traveling
at the speed of sound through the gas. The speed
of sound in dry air at atmospheric pressure is ap-
proximately 330 m/s.

As with other types of waves, sound waves can
constructively and destructively interfere with each
other. And as in the case of longitudinal waves
on a string, constructive and destructive interfer-
ence can create standing waves with nodes and
antinodes. Nodes on a string are positions where
total destructive interference occurs in the trans-
verse motion of the string, resulting in no move-
ment of the string. Nodes in a sound wave are dif-
ferent. They are positions where total destructive
interference of the pressure waves occur, resulting
in no change in pressure. Similarly, antinodes of
sound waves are positions where the largest pres-
sure changes are happening, not positions where

Graphics
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Figure 11.11: Longitudinal waves created in a gas
by an object that is oscillating right and left. The
waves are regions of higher and lower pressure
that move away from the object. [1]

Sound waves are often shown graphically simply as
lines that represent areas of high pressure.

Figure 11.12: A simpler way to sketch the same
scenario as in the figure above.[1]

Numbers

Assumptions: dry air at atmospheric pressure

Knowns Unknowns
v = 330m/s l

f1 = 262 Hz f2

We can use the relationship between wavelength,
speed, and frequency to find the wavelength of mid-
dle C in air:

λ1 =
v

f1

= 330m/s
262 Hz

= 1.26m

Looking at Figure 11.14 we can see that this wave-
length is four times the length of the tube:

l = λ1

4
= 1.26m

4
= 0.315m

Figure 11.14 also helps us to find the wavelength
of the second harmonic for this tube:

3λ2

4
= l

λ2 =
4l

3
= 0.42m
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the most movement is happening.

Many musical instruments are designed to control
the wavelengths of the sound created by changing
the length of a hollow tube or by opening and clos-
ing holes in the tube. If a sound wave is created
inside a tube that is closed at one end, the open
end, where the pressure remains the same as the
pressure outside the tube, is a node; the closed
end is an antinode. Interestingly, the tube can be
curved around into different shapes because pres-
sure waves travel easily around the curves.

Higher notes can be made by decreasing the length
of the tube (and thus decreasing the length of the
wavelength of the first harmonic) as is done with
a trombone. Different notes can also be created
by using tubes of different lengths, as with a pipe
organ or pan flute.

Some instruments, like a clarinet, have holes along
the length of the tube that can be opened or closed.
Any open hole creates a node at that position.

The first and second harmonics of one tube of a
pan flute are shown in Figure 11.14. We can use
what we learned in Chapter 9 to find the length
that a tube of a pan flute should be to produce
a “middle C,” a note that is near the middle of a
piano keyboard, which has a frequency of 262 Hz.
We should also be able to find out what the second
harmonic would be for that tube.

Figure 11.13: Different lengths of tubes of a pan
flute produce different notes. [68]

2nd harmonic

1st harmonic

N

N

N

A

A A

l

λ1/4

3λ2/4

open closed

Figure 11.14: The first two harmonics in a tube
that is closed at one end. “N” indicates a node
and “A” indicates an antinode.[1]

From this we can find the frequency of the second
harmonic in air:

f2 =
v

λ2

= 330m/s
0.42m

= 786 Hz
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11.6 Sound Level

Words

When sound waves aren’t confined to small vol-
umes of gas, they tend to spread out in spherical
shells, in much the same way that ripples move out-
ward in circles when still water is disturbed. The
energy in each pressure wave spreads out over more
and more area as the sphere moves outward, so the
intensity of the sound drops with distance. That is
why something sounds louder when it is closer. The
intensity of sound waves can also drop, or “attenu-
ate,” as sound travels through a material, primarily
because of intermolecular forces acting against the
vibration in the material.

The waves in Figure 11.15 are constantly moving
outward; wherever a person is standing relative to
the drum set, the waves travel past them at the
same speed and the same frequency.

We perceive sounds in terms of pitch and loud-
ness. We have seen already that pitch is related
to the frequency of the sound wave. Loudness is
related to the amplitude of the sound wave. From
a physical perspective, what we call “volume” or
“loudness” is measured in terms of a variation of
pressure compared to the average pressure in the
air. This is called the “sound pressure level” SPL,
and it is usually measured in decibels (dB). Zero dB
is typically near the minimum threshold of human
hearing, but that is a rough measurement, because
the threshold of human hearing varies across dif-
ferent people and different pitches, and changes as
we age.

Graphics

Figure 11.15: Sound waves move outward from
the source in spherical shells, getting weaker as
their energy spreads out more and more.[69]

Numbers

Sound pressure level SPL is related to the pressure
differences created by sound waves:

SPL = 20 log10 (
Ps

P0
) dB (11.5)

…where the sound pressure Ps is a measure of the
variation in pressure caused by sound in a medium,
and P0 is a reference sound pressure.

Compared to the sound pressure Ps,1 at a distance
r1 from the source, the sound pressure at a distance
r2 from the source is given by:

Ps,2 =
r1
r2
⋅ Ps,1 (11.6)

…if the sound is propagating in open air.
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A logarithmic scale is used for sound because many
human senses, including hearing, do not respond
to stimuli in a linear fashion. For example, while
it may be possible for a person to hear a whisper
in a quiet room, it would not be possible for the
same person to hear the same whisper while stand-
ing next to a roaring jet engine. Our ability to hear
is dependent not just on the sound pressure cre-
ated by something, but on the size of that sound
pressure compared to the sound pressures created
by other simultaneous sounds.

For sounds traveling in open air, the sound pres-
sure decreases with the distance from the source.
A good “rule of thumb” is that the sound pres-
sure level decreases by 6 dB with every doubling of
distance from the source of the sound.

The SPL of a whisper is approximately 25 dB; the
SPL of a typical car is approximately 60 dB when
measured from a distance of 1 m. Let’s find the
distance we would need to be away from a car for
it to be at the same loudness as a whisper.

There is a difference of 35 dB between the whis-
per and the car. That is almost 6 times 6 dB, so
the distance should have to double about 6 times.
That means the distance from the car would have
to go from 1 m to about 26 m, or 64 meters. The
calculation in the numbers column shows that the
actual value is 56 m, so this is a good approxima-
tion.

Assumptions: open air

Knowns Unknowns
SPL1 = 60 dB r2

r1 = 1m
SPL2 = 25 dB

∆SPL = SPL2 − SPL1

= 25 dB − 60 dB = −35 dB

∆SPL = (20 log10 (
Ps,2

P0
) − 20 log10 (

Ps,1

P0
)) dB

−35 = 20(log10 (
Ps,2

P0
) − log10 (

Ps,1

P0
))

−35
20
= log10 (

Ps,2

P0
⋅ P0

Ps,1
) = log10 (

Ps,2

Ps,1
)

−1.75 = log10 (
r1
r2
)

10−1.75 = r1
r2

r2 = r1 ⋅ 101.75 = (1m) ⋅ 56 = 56m

So it should still be possible to hear a whisper when
a car is 56 m away.
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11.7 Doppler Effect and Echos

Words

In the discussion about Figure 11.15, it was stated
that wherever a person is standing relative to the
drum set, the waves will reach their ears at the
same frequency. And that is true if the person is
not moving relative to the drumset. But what if
the source of the sound were moving at high speed
relative to the observer? This could mean that the
source is moving, the observer is moving, or both
are moving.

Let’s consider what a person hears when a train
passes by at 25 m/s with its whistle making a sin-
gle, 400 Hz sound wave.

If you are standing by a train track the pitch of a
train whistle drops as the engine goes past. The
reason for this is illustrated in Figure 11.16. The
large outer circle is from when the train was in the
center of the image, and is centered on the position
of the train at that time. The next circle as we
move inward came from the time when the train
was slightly to the left of center. And so forth until
the smallest, darkest circle, which came from the
train when it was farthest to the left.

Notice what happens to the spacing between the
high-pressure parts of the waves. They are closer
together in front of the train and farther apart be-
hind the train. The speed of sound is the same ev-
erywhere, so that means the frequency (and there-
fore the pitch that we can hear) in front of the train
is higher than it is behind the train. This is called
the “Doppler Effect.”

Graphics
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Figure 11.16: Sound waves move outward from
the source in spherical shells, but if the source is
moving then the center of the shells moves along
with the object producing the sound. This creates
shorter wavelengths in front of the moving objects
and longer wavelengths behind the moving
object.[70]

Numbers

Assumptions: dry air at atmospheric pressure

Knowns Unknowns
vsound = 330m/s finitial

vtrain = 25m/s ffinal

vperson = 0
femitted = 400 Hz

The relationship between the observed frequency of
sound and the actual emitted frequency of sound
is given by:

fobserved = (
vsound ± vobserver
vsound ∓ vsource

) ⋅ femitted (11.7)

…if neither the source nor the observer is mov-
ing faster than the speed of sound through the
medium. A plus sign is used in the numerator if
the observer is moving toward the source and a mi-
nus sign is used if the observer is moving away from
the source. A minus sign is used in the denomina-
tor if the source is moving toward the observer and
a plus sign is used if the source is moving away
from the observer.
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Something even more interesting happens when the
object is moving faster than the speed of sound,
as illustrated in Figure 11.17. The sound waves
are completely behind the airplane shown in that
figure, so if you are in front of the airplane you will
not be able to hear it coming at all. Even if you
are directly above or below the airplane you will
not be able to hear it until after it has passed you.
And when the sound finally does come, the sound
waves at the leading edge all interfere with each
other constructively, producing a powerful pressure
wave sometimes called a shock wave, which creates
a “sonic boom.”

An object that is not otherwise producing sound
can reflect sound waves; this is what causes an
echo. Ultrasound, which is simply sound waves that
are too high in pitch for humans to hear, uses echos
to map different types of tissue within a living body.
If the object is moving relative to the source of the
sound, the Doppler Effect shifts the frequency of
the echo. A “Doppler ultrasound” test measures
not only the amplitude of the echo but also its
frequency, so it can create an image that shows
relative velocity in addition to just position. This
makes it possible, for example, to observe internal
blood flow in a non-invasive way.

Constructive interference

Figure 11.17: An object that is moving faster
than sound produces a shock wave of pressure
that creates a “sonic boom.”[71]

Figure 11.18: The black area near the center of
this ultrasound image shows that no sound was
reflected by the amniotic fluid. The black area
near the bottom left is a “shadow” created by the
head of the unborn child.[72]

In this case,

finitial = (
vsound + vobserver
vsound − vsource

) ⋅ femitted

= (
vsound + vperson
vsound − vtrain

) ⋅ femitted

= ( 330m/s + 0
330m/s − 25m/s

) ⋅ 400 Hz

= 433 Hz

ffinal = (
vsound − vobserver
vsound + vsource

) ⋅ femitted

= (
vsound − vperson
vsound + vtrain

) ⋅ femitted

= ( 330m/s − 0
330m/s + 25m/s

) ⋅ 400 Hz

= 372 Hz

The emitted pitch is close to the G above mid-
dle C on a piano; the pitch heard as the train is
approaching is close to the A above middle C (of-
ten called “A440”); the pitch heard after the train
passes is close to the F# above middle C. So the
pitch drops by approximately three half-notes as
the train passes.
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11.8 Non-Ideal Gases

Words

This chapter began with a definition of an ideal
gas:

• molecules of the gas interact with each other
only through perfectly elastic collisions

• size of the molecules of an ideal gas is negli-
gible compared to both the size of the con-
tainer and the average distance between gas
molecules

• all of the gas molecules are identical

This model of an ideal gas works well in a great
many situations, but in some situations it is neces-
sary to consider the deviation of a real gas from the
model of an ideal gas. We will consider the effects
of violating each of the parts listed above for the
definition of an ideal gas.

First, gases in fact don’t interact only through per-
fectly elastic collisions. If gases are highly reactive
then they will react chemically with other molecules.
But even gases that are completely non-reactive
still experience attractive “Van der Waals” forces
when the gas particles are close enough to each
other. These small attractive forces create a slight
decrease in the pressure of the gas compared to
what would be expected for an ideal gas. When
the gas particles get even closer together, they ex-
perience repulsive forces.

Graphics

Figure 11.19: This P-V plot shows a sample
isotherm for a non-ideal gas compared to an ideal
gas.[73]

Numbers

For non-ideal gases, where the interactions between
particles and the total volume of the particles them-
selves cannot be ignored, the ideal gas law cannot
be used. It is instead modified with the introduc-
tion of two additional parameters a and b. These
parameters are experimentally determined for par-
ticular gases. The modified ideal gas law is called
“Van der Waals’ equation:”

(P + a ⋅ n
2

V 2
) ⋅ (V − n ⋅ b) = n ⋅R ⋅ T (11.8)

The parameter a is related to the interactions be-
tween molecules of the gas. The parameter b is the
volume occupied by one mole of the gas molecules.
Note that when a and b are both zero, the Van der
Waals’ equation reduces to a version of the ideal
gas law that is written in terms of moles instead of
molecules.

All of the variables in the ideal gas law–pressure,
volume, number of moles, and temperature–are re-
ferred to as “state functions,” because they de-
scribe the state of the gas at a particular point in
time, without giving any information about how the
gas came to be in its current state.
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Second, ideal gases assume that the size of the gas
molecules themselves is negligible compared to the
volume of the container. But when the number of
molecules is increased or the volume is decreased
enough, the volume of the particles themselves can
no longer be neglected. As a result, the effective
volume of the container is reduced by the volume of
the gas molecules. This reduction in the effective
volume causes the pressure to be larger than would
be expected for an ideal gas.

And finally, it is much more common to find a mix-
ture of different gases rather than a gas that is
made up of only one type of molecule. Our atmo-
sphere is an example of this, made up of almost
80% nitrogen and 21% oxygen, with many other
gases mixed in. For a gas like this that is made up
of many different molecules, the total pressure of
the gas is made up of the sum of all of the par-
tial pressures of each gas. This is called “Dalton’s
Law.”

Figure 11.20: These pie charts show the
distribution of gases in the earth’s atmosphere.[74]

Daltons’ Law states that the total pressure of a gas
that is made up of a mixture of multiple molecules
is the sum of the partial pressures of each con-
stituent gas:

Ptot = P1 + P2 +⋯ (11.9)
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11.9 Summary

Chapter summaries in this book are ordered by concept, not necessarily in the order in which they are
presented in the chapter. Mathematical models are grouped together at the end of each summary. See the
appendices for the meanings of all symbols used in this book.

General

• Gases are a type of fluid.

• Monatomic gases are gases in which each molecule is composed of a single atom.

• Molecules of a gas tend to bounce around freely, interacting with each other only through collisions.

• The size of the molecules of an ideal gas is negligible compared to both the size of the container and
the average distance between gas molecules.

• All of the molecules of an ideal gas are identical.

• Sound waves, which are longitudinal waves with areas of compression and rarefaction, can travel
through gases.

• Transverse waves cannot travel through gases.

• Sound waves can interfere with each other.

Forces

• When volume and temperature of gas molecules remain constant, the pressure of a gas is proportional
to the number of molecules of gas.

• When number and temperature of gas molecules remain constant, the pressure of a gas is inversely
proportional to the volume of the gas.

• Gauge pressure is the difference between total pressure and external pressure, e.g. atmospheric
pressure.

• Gauge pressure can be positive, negative or zero; total pressure cannot be negative.

• Buoyant force is present in gases as well as liquids.

• Nodes in a sound wave are positions where the pressure is constant.

• Antinodes in a sound wave are positions where the largest pressure changes are happening.

• Nodes occur at open places in a hollow tube; antinodes occur at closed ends of a hollow tube.

• When multiple ideal gases are mixed together, the total pressure is the sum of the partial pressures
of each individual gas.

Motion

• The average speed of gas molecules increases with temperature

• The frequency of a sound wave changes depending on the motion of the object creating the sound
and the observer.



Momentum

• (Nothing!)

Energy

• Molecules of an ideal gas interact with each other only through perfectly elastic collisions.

• When sound waves aren’t confined, their energy spreads out in spherical shells, and the amplitude of
the sound decreases with distance.

Mathematical Models

equation restrictions on the validity of the equation

Ptot,1 ⋅ V1 = Ptot,2 ⋅ V2 (11.1)
ideal gas; temperature & number of molecules constant

“Boyle’s Law”

Ptot = Pexternal + Pgauge (11.2) -none-

Ptot ⋅ V = N ⋅ kB ⋅ T (11.3)
ideal gas; temperature must be in kelvin

“Ideal gas law”

TK − 273K = TC = 5
9
(TF − 32○F) (11.4) -none-

SPL = 20 log10 ( Ps

P0
) dB (11.5) -none-

Ps,2 = r1
r2
⋅ Ps,1 (11.6) sound is propagating in open air

fobserved = (vsound±vobserver

vsound∓vsource
) ⋅ femitted (11.7) source and observer are moving slower than the speed of sound

(P + a ⋅ n
2

V 2 ) ⋅ (V − n ⋅ b) = n ⋅R ⋅ T (11.8)
all gas molecules are identical

“Van der Waals’ equation”

Ptot = P1 + P2 +⋯ (11.9)
multiple ideal gases mixed together

“Dalton’s Law”



11.10 Questions

Questions are ordered according to Bloom’s Taxonomy, progressing from regurgitating information (Level
1) to synthesizing new information with previous knowledge to create something new (Level 6). The bold
letters at the beginning of each question indicate whether the question involves Words [W], Graphics [G],
and/or Numbers [N]. See the appendices for conversion factors.

Level 1 - Remember

11.1 [W & N] Add labels to each equation in the “Mathematical Models” section of the summary that
tell what the symbol to the left of the = sign represents.

11.2 [W, G, & N] Which of the following can be negative?

(a) absolute pressure
(b) atmospheric pressure
(c) gauge pressure
(d) total pressure

Level 2 - Understand

11.3 [W & G] Figure 11.6 shows bubbles getting larger and larger as they rise to the surface. Is the way
that they are drawn reasonable? Is there anything about that sketch that is not reasonable?

11.4 [N] An internet search was used in Section 11.3 to find bike tire pressure. Are tire pressures reported
on the internet gauge pressures or total pressures? Explain your reasoning.

11.5 [W & G] The image below shows an unusual kind of pressure gauge. Does it measure total pressure
or gauge pressure? How can you tell? What do the numbers to the left of the zero represent?

An unusual pressure gauge.[75]

11.6 [G] Figure 11.14 shows harmonics for a pipe of a pan flute that is open at one end. If the pipes were
open at both ends, would the ends of the pipes have pressure nodes or antinodes?



Level 3 - Apply

11.7 [N] The calculations for net force were not completed in Section 11.4. What is the net force on the
balloon, including the direction? Don’t forget about the mass of the balloon itself.

11.8 [N] Practice converting temperatures between the various scales mentioned in Section 11.4:

(a) What is 0K in degrees Celsius?
(b) What is 0○C in degrees Fahrenheit?
(c) What is 0○F in degrees Celsius?
(d) Is there any temperature where the temperature measured in degrees Celsius has the same

numerical value as the temperature measured degrees Fahrenheit? If so, find that temperature.
If not, explain why not.

(e) Is there any temperature where the temperature measured in degrees Celsius has the same
numerical value as the temperature measured in kelvin? If so, find it. If not, explain why not.

11.9 [G] Figure 11.14 shows the first two harmonics for a pipe of a pan flute that is open at one end.
Draw the third harmonic for this pipe.

11.10 [G] Figure 11.14 shows the first two harmonics for a pipe of a pan flute that is open at one end.
Draw the first harmonic for a pipe that is open at both ends.

11.11 [G] Figure 11.14 shows the first two harmonics for a pipe of a pan flute that is open at one end.
Draw the first harmonic for a pipe that is closed at both ends.

11.12 [N] Sounds louder than 70 dB can start to damage hearing. A jackhammer creates a sound pressure
level of approximately 100 dB at a distance of 1 m. At what distance is it safe to be exposed to the
sound of a jackhammer without hearing protection?

Level 4 - Analyze

11.13 [W & N] The average speed of the helium atoms in Section 11.1 is given as 1 350 m/s. What is the
average velocity of the helium atoms in the box if it is measured over a long period of time? Explain
your answer.

11.14 [N] How would the final volume change in Section 11.2 if the diver were in fresh water instead of
seawater?

11.15 [W, G, & N] Use an internet search to find the mass of an automobile and its recommended tire
pressure, and use this information to find the area of each tire that is touching the ground, assuming
the mass is distributed equally between the tires. Is your result reasonable? Explain.

11.16 [W] Some hospital rooms are kept at “positive pressure” for patients who are particularly susceptible
to airborne illnesses Does this refer to gauge pressure or total pressure? In what direction would air
flow around the edges of the door of a room that is kept at positive pressure? Explain why this would
be advantageous.

11.17 [W] Some hospital rooms are kept at “negative pressure” for patients who have illnesses that are
easily spread through the air. Does this refer to gauge pressure or total pressure? In what direction
would air flow around the edges of the door of a room that is kept at negative pressure? Explain why
this would be advantageous.

11.18 [W,G, & N] A simple mercury barometer can be used to measure atmospheric pressure. It is
composed of something like a long test tube, closed at the top end and open at the bottom. The tube
is partially filled with liquid mercury, and the open end of the tube is submerged in a pool of mercury.



In the space above the mercury in the tube is a near-total vacuum. Because of this, there is zero air
pressure pushing down on the top of the mercury in the tube. Look up the density of mercury, and
use that to find the height h of the column of mercury if there is one atmosphere of pressure pushing
down on the pool of mercury.

A simple mercury barometer[1]

11.19 [W, G, & N] One of the assumptions made in Section 11.3 is that the area touching the ground is
a rectangle. In fact the area is probably more like an ellipse. Look up the formula for the area of an
ellipse. Compare the areas of a rectangle and an ellipse with the same dimensions as the rectangle.
What is the percentage difference between the two?

11.20 [W & G] Section 11.7 doesn’t describe what happens when the observer is moving relative to the
object that is creating the sound. Describe, using Figure 11.16, how the sound of the drums would
change if a person were moving quickly toward the drums or quickly away from the drums. Remember
that the waves drawn in the figure are not stationary but are moving outward.

11.21 [N] In Section 11.7 a situation was analyzed where a train was moving past a stationary person.
Re-analyze that situation with the train still blowing its 400 Hz whistle, but this time with the train
motionless and the person passing the train at a speed of 25 m/s.

Level 5 - Evaluate

11.22 [W, G, & N] A 100-ml syringe is half-filled with water and half-filled with air at atmospheric pressure.
If the plunger is pushed in, increasing the pressure inside the syringe to four times atmospheric
pressure…

(a) …what is the new volume of the water?
(b) …what is the new volume of the air in the syringe?
(c) …what assumptions are you making in answering this question?

11.23 [W & N] Are the assumptions made in Section 11.4 reasonable? Are there any other assumptions
that are made but that aren’t listed? Explain your answers.



11.24 [N] A statement is made in Section 11.4 that it is important to use kelvin to measure temperature when
dealing with ideal gases. Explain why that is true. Hint: Look at the ideal gas law (Equation 11.3)
and think about what happens to the pressure or the volume when the temperature goes to zero, and
compare with your personal experience at those temperatures.

11.25 [W & G] The caption for Figure 11.7 makes statements about the density of the gas molecules in
the figure, and the text below the figure depends on those statements. Are there other assumptions
that are needed in order for the text below the figure to correctly compare the gauge pressures in the
figure? If so, what are they?

11.26 [W, G, & N] One of the assumptions made in Section 11.3, the one about the area of each tire that
is touching the ground, is probably not a very good one. If the assumption about the air pressure
being the same in each tire was correct, and that pressure was 4.85× 105 Pa, what would the area be
for each tire if the charcoal is positioned directly over the back tire and the person’s center of mass
is centered horizontally halfway between the two tires?

11.27 [N] What temperature would the air in the hot air balloon have to be in Section 11.4 so that the
balloon would just hover in the air without going up or down?

11.28 [N] Equation 11.1 is really just an application of Equation 11.3 in a situation where the temperature
and number of particles is constant. Create a similar mathematical model that is an application of
Equation 11.3 in a situation where the number of particles is constant but the temperature is not.

11.29 [W, G, & N] The calculations in Section 11.5 show that the length of a single pipe of a pan flute
should be 0.315 meters long to produce a note near the center of a piano. Looking at Figure 11.13,
does it appear that any of the pipes may be close to this length? Are most of the pipes longer or
shorter than 0.315 meters? What does that tell you about their frequency or pitch compared to the
center keys of a piano?

11.30 [W & N] Compare the speed of sound in air to the average speed of a gas particle in air. Are they
roughly the same size (which in physics often means within a factor of 10 of each other)? Which is
larger? Does this make sense to you? Explain why or why not.

11.31 [W & N] Equation 11.7 says that it is only valid when the observer and source are both moving as
speeds lower than the speed of sound. Try to use the equation with one or both moving at the speed
of sound, toward and away from each other. What happens? In some situations you should get a
reasonable answer. In others you will not. Explain what is happening physically in the situations when
the mathematical answer is not reasonable.

Level 6 - Create

11.32 [W, G, & N] At the beginning of Chapter 1 in Figure 1.1 was a template for a concept map. Add the
main ideas from this chapter to a similar concept map that is specifically for gases. Remember that
many ideas about fluids were introduced in the chapter on liquids, so many ideas from that chapter
can be used in this concept map for gases.

11.33 [W, G, & N] Imagine you are writing a test question related to this chapter. Think of your own
example of a situation that you can analyze using the concepts, graphics, and mathematical analyses
described in this chapter. Describe the situation, and use the tools from this chapter to analyze the
situation as completely as you can, including motion, forces, energy, and momentum.

11.34 [W, G, & N] Think about possible misconceptions about the material in this chapter. Write a
question and an incorrect solution to it that demonstrates a student making such a conceptual error.
This cannot be a simple misuse of a vocabulary word, a unit error, or a mathematical error like
making an addition error or multiplying when addition was needed, unless the error is rooted in a real
misunderstanding about the physics behind the calculation or the misuse of a word. After you have



written the question and incorrect solution, explain what is wrong with the student’s solution, and
write a correct solution to the problem. Note: You may use a question from this chapter that you
got wrong the first time, and explain the initial error in your thinking and how you corrected it.
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Chapter 12

Temperature and Heat

Figure 12.1: A steam engine converts heat into
work.[76]

The word “heat” hasn’t been used before in this
book, but you know it by a different name: ther-
mal energy. So we have already looked at both
temperature and heat, and now we will study them
more closely and also see how they interact with
each other. In everyday English, “heating some-
thing up” means the same as increasing the tem-
perature of the thing. And it is true that adding
heat to an object often increases its temperature,
but that is not always the case. There are some
situations where temperature can change without
adding heat, for example if a gas is rapidly com-
pressed. There are other situations where heat can
be added to an object without changing its tem-
perature, for example when ice melts in a glass of
water.

Temperature affects the volume of solids and liq-
uids. And we have also seen that temperature can
affect the volume of a gas, but gas is more com-
plicated since it is compressible. The interplay of
volume, pressure, temperature, and heat in gases
has spawned an entire field of physics, called “ther-
modynamics.” Up until this point we have always
considered heat (which, remember, is just another
name for thermal energy) to be lost. But thermo-
dynamics shows us that this lost thermal energy
can be used, for example in a steam engine, to do
work. Thermodynamics also shows that there are
ways to use energy to reduce the temperature of
objects, for example in a refrigerator.



12.1 Heating a Solid

Words

In most cases we can think of thermal energy as
the kinetic energy of atoms moving around ran-
domly on a microscopic level. This kinetic energy
isn’t making the object move, because the random
motion means that the total momentum of the ob-
ject is zero. But adding heat to one part of a solid
object increases the motion of the molecules in that
part. The molecules in a solid are tightly bound to
each other, so they stay in the same position within
the solid, but they oscillate back and forth, pushing
and pulling on the molecules next to them. This
oscillation affects nearby molecules, making them
oscillate–in this way, the thermal energy spreads
through the solid. This method of heat transfer
through a solid is called “conduction.” Some solids
conduct heat better than others–metals are known
for being good conductors of heat, and glass is
known for being a poor conductor of heat. That
is why cooking pots are usually made of metal and
insulation is often made of glass fibers.

These individual microscopic oscillations of the
molecules can be observed as a change in the tem-
perature of the object: adding thermal energy in-
creases the temperature. The amount of the tem-
perature change depends on the mass and on the
material itself. In addition, the total size of the
object changes with temperature. Most materials
expand slightly as their temperature increases.

Graphics

Figure 12.2: A cast iron skillet on a stove.[77]

Figure 12.3: Sketch of the skillet showing heat
coming in the bottom.[1]

Numbers

Assumptions: physical “constants” are valid over
the whole temperature range; iron remains solid
over the whole temperature range; final tempera-
ture is the same throughout the iron skillet; skillet
shape remains the same

Knowns Unknowns
mi = 3 kg mf

Ti = 20○C ∅f

Tf = 90○C hf

∅i = 0.25m Vf

hi = 0.04m ∆Eth

αiron = 1.0 × 10−5 ○C−1

ciron = 450 J/ (kg ⋅ ○C)

The coefficient of linear thermal expansion αiron

and the specific heat capacity ciron were found us-
ing an internet search. The specific heat capac-
ity describes the relationship between temperature
change ∆T and heat ∆Eth (or Q is often used as
a symbol for heat) added to a material with mass
m:

∆Eth =m ⋅ c ⋅∆T (12.1)

We can use this to determine the heat (thermal
energy) needed to increase the temperature of the
skillet.

∆Eth = (3 kg) ⋅ (450
J

kg ⋅○ C
) ⋅ (90○C − 20○C)

= 94500 J
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We will consider what happens to an empty cast
iron skillet that is placed on a hot stove. The skil-
let is initially at 20○C, with a mass of 3 kg, an
inside diameter of 25 cm, and an inside depth of
4 cm. For simplicity, we will ignore the handle of
the skillet and approximate its shape as a hollow
cylinder that is closed on one end. If the skillet is
heated to a temperature of 90○C, what is its new
mass, diameter, height, and volume? How much
heat is needed to reach this temperature?

To answer these questions, we need to know some-
thing about the properties of iron. One impor-
tant property is the coefficient of linear thermal
expansion α, which describes the change in the
linear dimensions of an object as the temperature
changes. These coefficients can be found in tables
online or in reference books, but in every case they
are only approximations that are valid over a cer-
tain temperature range. We will assume that the
values found online are valid for all temperatures
unless the reference source includes the tempera-
ture range. The skillet gets slightly larger as the
temperature increases. But from your own expe-
rience you probably know the change in the size
of the skillet is extremely small compared to the
size of the skillet itself. And the mass should not
change at all, because no iron is being added or
removed.

Thermal expansion is not much of an issue for an
iron skillet, but if you consider miles of iron rail-
road tracks, the change in length can be significant
enough to warp the tracks and derail a train. Large
structures often include expansion joints to protect
from damage caused by temperature changes.

Figure 12.4: Sketch of the skillet after it has
increased in size.[1]

Figure 12.5: This expansion joint allows the
length of the rails on either side to expand or
contract by several centimeters without losing
alignment with each other.[78]

The change in any linear dimension of a solid can
be found using the coefficient of linear thermal ex-
pansion:

∆l = l ⋅ α ⋅∆T (12.2)

…where l is any linear dimension, e.g. height, width,
radius, or diameter. We can use this to determine
the height and diameter of the skillet at 90○C.

∆h = hi ⋅ α ⋅∆T

= (0.04m) ⋅ (1.0 × 10−5 ○C−1) ⋅ (90○C − 20○C)
= 2.8 × 10−5 m

Similarly, the change in the diameter of the skillet
is ∆∅ = 1.75 × 10−4 m.

The volume of the cylinder is simply the area of
the bottom multiplied by the height, so the original
volume was…

Vi = π ⋅ r2i ⋅ hi

= π ⋅ (0.25/2m)2 ⋅ (0.04m)
= 1.9635 × 10−3 m3

The final volume, using the final diameter and fi-
nal height, is 1.9676 × 10−3 m3. These extremely
small changes in lengths and volume are probably
too small to notice or even to measure without us-
ing specialized equipment. But since the change in
length is proportional to the original length, ther-
mal expansion can easily be seen in very long struc-
tures like bridges or railroad tracks.
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12.2 Heating a Liquid

Words

Let’s continue the scenario from Section 12.1, by
removing the skillet from the heat source and pour-
ing 1.5 liters of cold water into it. The skillet
starts at 90○C and the water starts at 10○C. As-
suming that there is no flow of heat into or out
of the skillet-water system, what final temperature
will they reach? What is the final volume of the
water?

When water is poured into the skillet, heat flows
from the skillet into the water. This is because the
temperature of the skillet is higher than the tem-
perature of the water. Heat flows from regions of
higher temperature to regions of lower temperature
unless something is actively working on the system
to prevent or even reverse the flow of heat.

Heat will continue to flow from the skillet into the
water until they are both at the same temperature,
at which point the flow of heat will stop. When
heat is no longer flowing the system is said to be
in “thermal equilibrium.” This is a way of defining
temperature: two objects are at the same tempera-
ture if heat does not flow between them when they
are brought into thermal contact with each other.

This physical scenario can be approached in terms
of conservation of energy. Some thermal energy
leaves the skillet, and the same amount of thermal
energy enters the water. The final temperature of
the system should be somewhere between 90○C,
the initial temperature of the skillet and 10○C, the
initial temperature of the water.

Graphics

Figure 12.6: Schematic of the skillet just after the
water has been added, showing heat transferring
from the skillet to the water.[1]

Figure 12.7: Schematic of the skillet and water
after they have reached thermal equilibrium.[1]

Numbers

Assumptions: isolated system; specific heat ca-
pacities and coefficient of bulk thermal expansion
are valid over the whole temperature range; iron
remains solid and water remains liquid

Knowns Unknowns
miron = 3 kg Tf

Vwater,i = 0.0015m3 Vwater,f

Twater,i = 10○C
Tiron,i = 90○C
βwater = 2.1 × 10−4 ○C−1

ciron = 450 J/ (kg ⋅ ○C)
cwater = 4182 J/ (kg ⋅ ○C)

Using conservation of energy for this isolated sys-
tem where the only type of energy is thermal, we
have…

0 =∆Etot =∆Eth,tot =∆Eth,water +∆Eth,iron

=mwater ⋅ cwater ⋅∆Twater +miron ⋅ ciron ⋅∆Tiron

=mwater ⋅ cwater ⋅ (Tf − Twater,i)+
miron ⋅ ciron ⋅ (Tf − Tiron,i)

Now we can rearrange and solve for Tf :

(mwater ⋅ cwater +miron ⋅ ciron) ⋅ Tf =
mwater ⋅ cwater ⋅ Twater,i +miron ⋅ ciron ⋅ Tiron,i
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At first, one might think that the temperature
should be halfway between the two, so 50○C. But
remember that the skillet has twice the mass of
the water, so that would tend to make the final
temperature closer to 90○C than to 10○C. But it
isn’t as simple as that. Another important factor is
the specific heat capacity of the materials. Specific
heat capacity describes the amount of heat needed
to increase the temperature of a material. And the
specific heat capacity of water is ten times larger
than that of iron. So in fact the final temperature is
much closer to the initial temperature of the water
than it is to the initial temperature of the iron.

Like solids, most liquids also expand when they are
heated, but liquids don’t have linear dimensions, so
their expansion is described as a change in volume.
They have a coefficient of “bulk” or “volumetric”
thermal expansion, β. The value of β is usually
reasonably constant for different temperatures, but
water is unusual. Its coefficient of bulk thermal ex-
pansion decreases at low temperatures and actu-
ally becomes negative below approximately 4○C.
So at low temperatures water actually expands as
the temperature decreases!

The water is physically touching the skillet, so the
heat transfers into the water through conduction.
Heat can also transfer through fluids by conduc-
tion, but if the heat is coming from the bottom
then the primary method of heat transfer is con-
vection. Convection is circulation of the molecules
that occurs because the warmer fluid at the bottom
expands and its density decreases. This creates a
buoyant force that lifts the warmer fluid up, and it
is replace by cooler fluid flowing down.

Figure 12.8: As heat enters the bottom of the
fluid, the fluid at the bottom gets warmer and
expands. The warmer fluid rises since it is less
dense than the cooler fluid above it, and the
cooler fluid flows down to the bottom. This is
called convection. [1]

Figure 12.9: On the left the numbers are different
but the spacing is the same, so a change of 10○C
is a change of 10K. On the right, a change of
10○C is a change of 18○F.[79],[80]

We were not given the mass of the water, but it
can be found from the density of fresh water, which
is 1000 kg/m3.

Tf =
mwater ⋅ cwater ⋅ Twater,i +miron ⋅ ciron ⋅ Tiron,i

mwater ⋅ cwater +miron ⋅ ciron

= (62730 + 121500) J
(6273 + 1350) J/○C
= 24○C

The bulk thermal expansion coefficient βwater was
found using an internet search. The value found
online was in units of K−1, so K was replaced with
○C, with no mathematical conversion needed. That
is because thermal expansion is calculated using
change in temperature, not the temperature itself.
Conversions are different for change in temperature
than they are for temperature:

∆TK =∆TC =
5

9
(∆TF ) (12.3)

The bulk thermal expansion coefficient is used in
exactly the same way as the linear thermal expan-
sion coefficient:

∆V = V ⋅ β ⋅∆T (12.4)

So the final volume of the water is…

Vwater,f = Vwater,i +∆Vwater

= Vwater,i ⋅ (1 + βwater ⋅∆Twater)
= (0.0015m3) (1 + (2.1 × 10−4 ○C−1) (14○C))
= 0.001504m

Again, this is an extremely small change in volume.
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12.3 Changing State

Words

Solid, liquid, and gas are the three most common
“states” of matter that we interact with on a daily
basis. It is possible for a material to change from
one of these states to another when heat is added
or removed. If heat is added to a solid until its
temperature reaches the “melting point,” any ad-
ditional heat will not increase the temperature but
will melt the solid into a liquid. Once all of the
solid has melted, adding more heat will increase the
temperature of the liquid. Then, if heat is added to
the liquid until its temperature reaches the “boil-
ing point,” any additional heat will not increase
the temperature but will evaporate the liquid into
a gas. After the liquid has all been evaporated, ad-
ditional heat can then increase the temperature of
the gas.

The same process can also proceed in reverse. If
heat is removed from a gas that is already at the
boiling point, the gas will condense into a liquid.
Once all of the gas has condensed, removing heat
will lower the temperature of the liquid until it
reaches the melting point. At the melting point,
removing heat from the liquid freezes it into a solid
without changing the temperature. Once all of the
liquid has frozen, removing more heat will lower the
temperature of the solid.

For our scenario we will start with 1.2 kg of ice at
a temperature of −20○C. How much heat needs to
be added to melt all of the ice and then boil away
half of the water?

Graphics

1.2 kg Ice
−20○C

1.2 kg Ice
0○C

Eth,1

1.2 kg Water
0○C

Eth,2

1.2 kg Water
100○C

Eth,3

0.6 kg Steam, 100○C
0.6 kg Water, 100○C

Eth,4

Figure 12.10: Eth,1 brings the ice to its melting
point. Then Eth,2 melts the ice. Then Eth,3

brings the water to its boiling point. Finally, Eth,4

boils away half of the water.[1]

Numbers

Assumptions: isolated system; specific heat ca-
pacities are valid over the whole temperature range;
atmospheric pressure

Knowns Unknowns
mice,i = 1.2 kg Eth,tot

Ti = −20○C
Twater,melting = 0○C
Twater,boiling = 100○C
cwater = 4182 J/ (kg ⋅ ○C)
cice = 2090 J/ (kg ⋅ ○C)
Lf,water = 3.34 × 105 J/kg
Lv,water = 2.23 × 106 J/kg
mwater,f = 0.6 kg

The different physical processes here (changing
temperature, melting, and boiling) require differ-
ent mathematical models. The heat needed to
change temperature has already been introduced.
The amount of heat required to melt a solid is…

Eth =m ⋅Lf (12.5)

…where Lf is the latent heat of fusion for the ma-
terial and m is the amount of the material that
melts. Similarly, the amount of heat required to
evaporate a liquid is…

Eth =m ⋅Lv (12.6)
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The amount of heat required to melt a solid is
called the “latent heat of fusion,” and the amount
of heat required to evaporate a liquid is called the
“latent heat of vaporization.” These latent heats
vary depending on the material.

It is also possible to change the state of a material
by changing the pressure while keeping tempera-
ture constant. This means that melting and boil-
ing points are in fact dependent on pressure; they
are normally reported at atmospheric pressure. At
some combinations of temperature and pressure it
is possible for a solid to change phase directly to a
gas without first changing to liquid. This is called
“sublimation.” A common example of this is “dry
ice,” solid carbon dioxide, which undergoes subli-
mation at atmospheric pressure.

The combinations of temperature and pressure at
which phase transitions occur are often shown on a
phase diagram like the one in Figure 12.12. “Phase”
is often used interchangeably with “state” when
discussing transitions between solids, liquids, and
gases, but some materials have multiple phases
within a single state. Water, for example, forms
into at least nine unique crystal phases at various
temperatures and pressures within its solid state.

Solid lines in a phase diagram indicate the transi-
tion points between the states. The near-vertical
dotted line in Figure 12.12 is representative of wa-
ter, which has an unusual slope: solid water can
melt as pressure increases! Every material has a
“triple point” on its phase diagram at which it can
exist in solid, liquid, or gas state; and a “critical
point” beyond which there is no clear distinction
between the liquid and gas states.
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Figure 12.11: Temperature as a function of heat
added. The plateaus in the graph occur when the
material is changing state, not changing
temperature.[1]

Figure 12.12: This generic phase diagram shows
the general trend followed by most materials, with
the temperatures and pressures at which a
material exists in solid, liquid, or gas states.[81]

…where Lv is the latent heat of vaporization for
the material and m is the amount of the material
that evaporates. Lf also describes the heat that
has to be removed to freeze a liquid into a solid,
and Lv describes the heat that has to be removed
to condense a gas into a liquid. The melting point,
boiling point, latent heats, and specific heats in the
“knowns” were found using an internet search.

In order to find the total heat required, we need to
find the heat required for each physical process and
add them together. Using Equation 12.1, Eth,1,
the heat required to bring the ice up to its melting
point, is…

Eth,1 =mice ⋅ cice ⋅∆Tice = 50160 J

Using Equation 12.5, Eth,2, the heat required to
melt the ice is…

Eth,2 =mice ⋅Lf,water = 400800 J

Using Equation 12.1 again, Eth,3, the heat required
to bring the water up to its boiling point, is…

Eth,3 =mwater ⋅ cwater ⋅∆Twater = 501840 J

Using Equation 12.6, Eth,4, the heat required to
boil away half of the water is…

Eth,4 = (mwater,i −mwater,f)⋅Lv,water = 1338000 J

So the total amount of heat required is…

Eth,tot = Eth,1 +Eth,2 +Eth,3 +Eth,4

= 2290000 J
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12.4 Gas at Constant Volume

Words

As with solids and liquids, adding heat to a gas
can increase its temperature, but the compressibil-
ity of gases make them much more complicated
than solids or liquids. So we will begin by looking
at gases that are in a container with a fixed volume,
regardless of the pressure, temperature, or number
of gas molecules. An air compressor is an example
of just such a container.

When heat goes into a gas that is held at constant
volume, the energy goes into the molecules of the
gas. For an ideal monatomic gas, the thermal en-
ergy tranforms into translational kinetic energy of
the gas particles. But the air in the earth’s at-
mosphere is almost completely made up of the di-
atomic gases (gases with two atoms per molecule)
nitrogen and oxygen. Ideal diatomic gases can
carry other types of energy besides just transla-
tional kinetic energy. They can also have rota-
tional kinetic energy. And the bond between the
two atoms can act like a spring, so they can also os-
cillate with spring potential energy. For molecules
with more than two atoms, like water vapor and
carbon dioxide, there are even more ways that they
can rotate and oscillate. It is impossible to mea-
sure all of these different types of energy across all
of the gas molecules in a typical gas, so this energy
is put together into a single category, the “internal
energy” of the gas.

Graphics

Figure 12.13: Air compressors are designed to
hold several atmospheres of air pressure. They are
often used for inflating tires and running
pneumatic equipment like staplers and nail
guns.[1]

Numbers

Assumptions: ideal monatomic gas

Knowns Unknowns
Pi,gauge = 2 atm Pf,gauge

V = 0.023m3 ∆Eth

Ti = 20○C N

Tf = 80○C

The ideal gas law can be used to find the number
of molecules in the gas from the initial conditions:

Pi,tot ⋅ V = N ⋅ kB ⋅ Ti

This can be rearranged to solve for N , but we need
to remember first to convert the gauge pressure to
absolute pressure and then convert it into pascals,
and convert the temperature to kelvin.

N =
(Pi,gauge + Patm) ⋅ V

kB ⋅ Ti

=
(3 atm ⋅ 1.01×10

5 Pa
1 atm

) (0.023m3)

(1.38 × 10−23 J/K) (293K)
= 1.7 × 1024

The numbers of molecules N involved with gases
in most real-world situations are huge, so the num-
ber of “moles” n is often used instead, where one
mole is 6.02 × 1023 molecules. The abbreviation
commonly used for for mole is mol. 6.02 × 1023 is
called “Avogadro’s number,” NA
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We will consider a physical scenario where a 23-liter
air compressor is filled with an ideal monatomic gas
at a temperature of 20○C and a gauge pressure of
2 atmospheres. How many molecules of gas are
in the air compressor? How much heat needs to
be added to the gas to increase its temperature to
80○C, and what would the pressure of the gas be
at that temperature?

As was mentioned in Chapter 11, the number
of molecules will be huge compared to numbers
that we work with on a daily basis. More than
1,000,000,000,000,000,000,000,000 molecules, in
fact! That’s a trillion trillions, or one septillion–a
number larger than our minds can really compre-
hend. So another unit is often used when dealing
with gases: the mole. One mole is 6.02×1023, and
if we count gas molecules in moles then that makes
the numbers much easier to work with. A mole is
just a number of something, much like a dozen is
12 of something. One mole of gas molecules in our
atmosphere has a volume of 22 liters at sea level
at a temperature of 0○C, so we should expect that
this 23-liter volume that is higher than atmospheric
pressure and higher than 0○C should contain more
than one mole of gas molecules.

As for the pressure, we know that the average speed
of the molecules increases as the temperature in-
creases. So the molecules will have higher changes
in momentum when colliding with the walls of the
container. That means a larger force on the walls
of the container, so the pressure will be higher at
the higher temperature.
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Figure 12.14: A line graph of total pressure versus
volume is often called a “P-V plot.” The blue
arrow indicates the path followed by the gas in
the air compressor as the temperature increased.
Pressure increased but volume remained constant.
The dotted red lines are isotherms. [1]

P-V plots are helpful in understanding the oper-
ation of thermodynamic systems. Lines on the
graph that follow curves of constant temperature
are called “isotherms.” These are similar to the
“isobars” that follow curves of constant pressure
on a weather map, or the contour lines that fol-
low curves of constant elevation on a topographical
map. On a P-V plot, higher temperatures are up
and to the right.

So the amount of gas in this scenario could also
be described as 2.86 moles. The ideal gas law can
be rewritten in terms of moles, using the ideal gas
constant R in place of the Boltzmann constant kB :

Ptot ⋅ V = n ⋅R ⋅ T (12.7)

R has a value of 8.31 J
K⋅mol

. Since we have the
final values for everything except pressure, we can
use Equation 12.7 to find the final pressure:

Pf,tot =
n ⋅R ⋅ Tf

V
= 3.65 × 105 Pa

Subtracting atmospheric pressure gives a final
gauge pressure of 2.64×105Pa or 2.6 atmospheres.

In this scenario, all of the heat that goes into the
gas is stored as internal energy Uint of the gas. For
an ideal monatomic gas, the mathematical model
relating temperature to internal energy is…

Uint =
3

2
n ⋅R ⋅ T = 3

2
N ⋅ kB ⋅ T (12.8)

For a diatomic gas, the fraction changes from 3/2
to 5/2, and for more complicated molecules the
fraction becomes even higher. The change in tem-
perature can be used to find the change in internal
energy, which in this scenario is equal to the heat
added to the system ∆Eth:

∆Eth =∆Uint =
3

2
n ⋅R ⋅∆T

= 3

2
(2.86mol) (8.31 J

K ⋅mol
) (60K)

= 2140 J
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12.5 Gas at Constant Pressure

Words

Instead of a container with a fixed volume, this
time we will study what happens inside a container
with a fixed pressure. Pistons are used in many
different types of machines, so for this scenario we
will look at a sealed vertical piston with negligible
friction and a cross-sectional area of 0.02m2. The
mass of the plunger is 70 kg, and the plunger is
initially motionless and in static equilibrium. The
initial volume of the ideal monatomic gas inside the
piston is 0.05m3 and the initial temperature of the
gas is 15○C. The outside pressure is 1 atm.

Find the initial pressure and the number of moles
of gas inside the cylinder. Then find the final pres-
sure, temperature, and volume of the gas inside
the cylinder when the system again reaches static
equilibrium after 10 kJ of heat is added to the gas.

Initially, the pressure inside the gas has to be just
large enough to hold the piston in place against
the force of gravity and the atmospheric pressure,
which both are pushing down on the piston.

When heat is added to the gas, we should expect
that the temperature of the gas will increase, which
means that the momenta of the gas molecules would
increase, increasing the pressure on the walls of the
container. But this time one of the walls, the top
surface, is movable. The upward force on the pis-
ton would be higher than the downward force, so
the piston is forced upward. That increases the
volume of the container.

Graphics

Figure 12.15: Sketch of the vertical piston. The
plunger seals in the gas and is able to move up
and down. [1]

Fgas

Fg

Fatm

plunger

Figure 12.16: Free-body diagram of the plunger[1]

Numbers

Assumptions: ideal monatomic gas; negligible fric-
tion; near the earth’s surface

Knowns Unknowns
A = 0.02m2 Ptot

m = 70 kg n

Vi = 0.05m3 Tf

Ti = 288K Vf

∆Eth = 1 × 104 J
Pext = 1.01 × 105 Pa

Since the plunger starts in static equilibrium, we
can use the free-body diagram to find the force
that the gas needs to apply to the plunger to hold
it up, and from that find the pressure of the gas.

Fnet = 0 = Fgas − Fatm − Fg

Fgas = Fatm + Fg

Pgas =
Fgas

A
=
Fatm + Fg

A

Ptot =
(Patm ⋅A) + (m ⋅ g)

A
= 135300 Pa

Now we can solve for the number of moles using
Equation 12.7:

n = Ptot ⋅ Vi

R ⋅ Ti
= 2.83moles
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When the volume increases, two things happen to
the gas molecules inside the container. First, the
time between collisions with the top surface in-
creases, which lowers the pressure. And second,
since the wall is moving away from the particles
that are colliding with it, the magnitude of the mo-
mentum of the particles is lower after each collision
than it was before the collision, which decreases the
temperature. So allowing the volume to change af-
fects both the pressure and the temperature of the
gas.

The piston is in equilibrium when the inside pres-
sure is equal to the outside pressure, so the pressure
is the same at the beginning as it was at the end.
What about during the time between the beginning
and the end? The change in pressure that starts
the piston moving is small compared to the total
pressure, and if the piston is moving at a constant
rate once it starts moving then the pressure during
that time is the same as the initial pressure. So the
pressure for the whole time is essentially constant.

When the pressure is held constant, the final tem-
perature of the gas is lower than it would have been
if the volume had been held constant. That means
the final internal energy of the gas is lower than it
would have been at constant volume. Where did
the rest of the thermal energy go if it didn’t go into
the gas? It was used to do work on the cylinder,
lifting it up against the force of gravity and the
atmospheric pressure. This is simply an applica-
tion of conservation of energy: The total amount
of heat that goes into a gas is equal to the sum
of the change in the internal energy of the gas and
the work done by the gas.
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Figure 12.17: A P-V plot for a gas expanding at
constant volume. The blue arrow indicates the
path followed by the gas in the piston. The area
under the curve shows the amount of work done
by the gas. [1]

As in a graph of force vs position, the area un-
der the curve shows the work done on a graph of
pressure vs volume of a gas.

The gas does work on the plunger, pushing it up.
As long as the force is constant, work is force times
displacement. A little bit of algebra lets us apply
the same principle to gases:

W = Fnet ⋅∆x ⋅���:1
cos θ

= (Fnet

A
) (∆x ⋅A)

= Ptot ⋅∆V

So as long as the pressure is constant,

W = P ⋅∆V (12.9)

If n is also constant, then another expression for
work can be found using Equation 12.7 again:

W = P ⋅∆V = n ⋅R ⋅∆T

Conservation of energy in the gas tells us that the
thermal energy that goes into the gas ∆Eth is
equal to the change in the internal energy of the
gas ∆Uint plus the work done by the gas W :

∆Eth =∆Uint +W (12.10)

Combining this with Equation 12.8 and the expres-
sion found above…

∆Eth =∆Uint + n ⋅R ⋅∆T

= (3
2
n ⋅R ⋅∆T) + (n ⋅R ⋅∆T )

= 5

2
n ⋅R ⋅∆T

Solving for ∆T for this scenario gives a value of
170K, so the final temperature is 458K.
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12.6 Heat Engines and Thermodynamic Cycles

Words

Now we will consider 0.4 moles of an ideal
monatomic gas in a sealed container that goes
through four different processes:

1. volume is held constant at 0.01m3 while the
pressure of the gas increases from 100 000 Pa
to 300 000 Pa

2. pressure is held constant while the volume
increases to 0.03m3

3. volume is held constant while the pressure
returns to 100 000 Pa

4. pressure is held constant while the volume
returns to 0.01m3

This is called a “thermodynamic cycle,” in which
the gas traces out a closed path on a P-V plot.
In the first process, the volume is not changing
so the gas is not doing any work. In the second
process, the gas is expanding. The pressure that
the gas applies to the walls of its container is always
pointing outward, and if the volume is expanding
then the walls are moving outward (or at least one
wall is moving outward), in the same direction as
the force on the wall. So the gas is doing work on
the container. In the third process, again no work
is being done, because the volume is not changing.
In the fourth process the walls are moving inward,
against the pressure caused by the gas. That means
the container is doing work on the gas.
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Figure 12.18: P-V plot for a gas going through
one complete cycle in four numbered steps. First
from “a” to “b,” then “b” to “c,” “c” to “d,” and
finally back to “a.” The area inside the loop
shows the amount of work done by the gas as it
completes one complete cycle. [1]

Vertical paths on a P-V plot describe “isovolumet-
ric” (“same-volume”) processes. Horizontal paths
on a P-V plot describe “isobaric” (“same-pressure”)
processes.

The path along the bottom of the rectangle in the
figure above goes from right to left, in the negative
direction, so the work done along that path is also
negative. So the area under the rectangle would
be added to the total work for the path from b to
c and subtracted for the path from d to a. This is
equivalent to not including it at all.

Numbers

Assumptions: ideal monatomic gas

Knowns Unknowns
n = 0.4mol Wnet

Va = Vb = 0.01m3 ∆Eth

Vc = Vd = 0.03m3

Pa = Pd = 1 × 105 Pa
Pb = Pc = 3 × 105 Pa

The work for each of the four processes can be
added together to get the total work done for one
cycle. For the second and fourth processes we can
use Equation 12.9. But P is not constant for the
first and third processes, so we can’t use that Equa-
tion. But the change in V is zero for those pro-
cesses, so the work done by each of those processes
is just zero. That leaves…

W =��*0
W1 +W2 +��*0

W3 +W4

= (Pb ⋅ (Vc − Vb)) + (Pd ⋅ (Va − Vd))
= (6000 J) − (2000 J) = 4000 J

We can also find the change in the internal energy
of the gas for each of the four processes using the
relationships found at the end of Section 12.4 &
12.5. But first we would need the temperatures
at each of the starting and ending points for each
process. These can be found by rearranging the
ideal gas law:
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So during the expansion the gas is doing work, and
during the contraction work is being done on the
gas. The change in volume is the same both times
in this example, but the force is higher when the
pressure is higher, in the second process. So in one
complete cycle the gas does a net positive amount
of work on the container. The gas seems to have
created useful energy. But energy can’t come from
nowhere–it is coming from the heat that is going
into the gas as it goes through the cycle. This is
a “heat engine,” which converts heat into work.
Which is remarkable. Up until now, every time we
have looked at thermal energy it has been energy
that was lost from whatever system we have looked
at. This time, heat is being captured and put to
use.

We can find the work done and the heat for each
process it goes through one cycle.

The net thermal energy going into the gas is equal
to the amount of work it does, but if we consider
each of the different processes, we can see that not
all of the thermal energy that goes into the gas is
converted to work. In the third process, for exam-
ple, the volume isn’t changing–that means no work
is being done. But the volume is decreasing, so the
temperature is decreasing. That means the inter-
nal energy of the gas is decreasing, so some of the
internal energy is being lost as heat instead of be-
ing used for work. So this heat engine is not 100%
efficient. In fact, no heat engine can be 100% effi-
cient, but some thermal energy is lost just as with
the other physical scenarios we have considered.

The operation of a heat engine is often drawn
schematically as shown below.

heat
engine

Heat source (hot)

Heat sink (cold)

Eth,hot

Eth,cold

W

Figure 12.19: Diagram of energy flow through a
heat engine.[1]

The circle in the middle represents the machine it-
self, and the arrows show the energy flowing into
or out of the machine. Heat naturally flows from
high temperature to low temperature, so the heat
going into the heat engine has to come from a high-
temperature heat source. Similarly, the heat leav-
ing the heat engine has to go into a low-temperature
“heat sink.”

Heat engines are designed to do work. That work
is shown as an output coming from the side of the
heat engine.

T = P ⋅ V
n ⋅R

This gives the following temperatures: Ta = 301K;
Tb = Td = 903K; and Tc = 2709K

For the first and third processes we should use the
relationship found in Section 12.4 for constant vol-
ume:

∆Eth,1 =
3

2
n ⋅R ⋅ (Tb − Ta) = 3000 J

∆Eth,3 =
3

2
n ⋅R ⋅ (Td − Tc) = −9000 J

For the second and fourth processes we should use
the relationship found in Section 12.5 for constant
pressure:

∆Eth,2 =
5

2
n ⋅R ⋅ (Tc − Tb) = 15000 J

∆Eth,4 =
5

2
n ⋅R ⋅ (Ta − Td) = −5000 J

So the net thermal energy going into the gas is…

∆Eth,net = (3000 + 15000 − 9000 − 5000) J = 4000 J

…exactly as expected. But in order to get 4 000 J
of work out of the heat engine, 18 000 J of heat
had to be put in. The other 14 000 J of energy left
the system as heat.

Since only 4 000 of 18 000 J went where we wanted
them to go, we say that the efficiency of this heat
engine is 4 000 J/18 000 J, or 22%.
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12.7 Refrigerators and Efficiency

Words

A heat engine converts thermal energy into work
while transferring thermal energy from a high-
temperature heat source to a low-temperature heat
sink. This generally increases the temperature of
the heat sink and decreases the temperature of
the heat source. What if such a machine could
be run in reverse, so that it removes heat from a
low-temperature heat sink by transferring it to a
high-temperature heat source? Then it could use
energy to remove heat from something that is al-
ready cold, making it even colder. A refrigerator!

We will consider the same 0.4 moles of an ideal
monatomic gas in a sealed container that goes
through four different processes, in reverse order
compared to Section 12.6:

1. pressure is held constant at 100 000 Pa while
the volume of the gas increases from 0.01m3

to 0.03m3

2. volume is held constant while the pressure
increases to 300 000 Pa

3. pressure is held constant while the volume
returns to 0.01m3

4. volume is held constant while the pressure
returns to 100 000 Pa

We can find the amount of work that needs to be
done on the gas in one cycle and the efficiency of
the system at removing heat from the cold side.
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Figure 12.20: P-V plot for a gas going through a
cycle. Since the path goes counter-clockwise, the
area inside the loop shows the amount of work
done on the gas as it completes one cycle. [1]

refrigerator

Heat source (hot)

Heat sink (cold)

Eth,hot

Eth,cold

W

Figure 12.21: Energy flow through a
refrigerator.[1]

Numbers

Assumptions: ideal monatomic gas

Knowns Unknowns
n = 0.4mol Wnet

Va = Vd = 0.01m3 e

Vb = Vc = 0.03m3

Pa = Pb = 1 × 105 Pa
Pc = Pd = 3 × 105 Pa

As in Section 12.6, the work for each of the four
processes can be added together to get the total
work done for one cycle:

W =W1 +��*0
W2 +W3 +��*0

W4

= (Pa ⋅ (Vb − Va)) + (Pc ⋅ (Vd − Vc))
= (2000 J) − (6000 J) = −4000 J

The amount of work done by the gas is negative–in
other words, 4 000 J of work was done on the gas.

A general expression for efficiency that can be used
in any situation is

e = What we want

What we put in
(12.11)
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The efficiency of any machine depends on what it
is made to do and on what has to be put in to
make it work. One of the most common examples
of efficiency is related to vehicles. When buying
a vehicle, many people want to know its fuel effi-
ciency. Vehicles are designed to move–that is their
primary purpose–so distance moved is part of the
efficiency. And if the vehicle uses gasoline or diesel
fuel then in order to make the vehicle move, fuel
has to be put in. So the amount of fuel is also part
of the efficiency. The most efficient vehicles will
go the longest distance with the smallest amount
of fuel. In US customary units, we want a lot of
miles from few gallons of fuel, so we want a large
number of miles per gallon, “mpg.”

For a heat engine we want a large amount of work
to be done compared to the heat that goes in. Both
work and heat are measured in joules, so the units
are joules/joule. In other words, the efficiency is
unitless. So energy efficiency is often given as a
number or a percentage.

For a refrigerator, we want to remove a large
amount of heat compared to the work that goes
in, so again the efficiency is unitless. For a refrig-
erator, the efficiency is often called the “coefficient
of performance.”

Isobaric and isovolumetric are not the only options
for thermodynamic processes. Two other common
processes are “isothermal,” in which the tempera-
ture of the gas is held constant, and “adiabatic,”
in which there is no heat transferred into or out
of the gas. Machines that use isothermal and adi-
abatic processes are usually more efficient than
those that use isobaric and isovolumetric processes.

Heat source (hot)

Heat sink (cold)

Eth,hot

Eth,cold

Wrefrigerator

Figure 12.22: Another way to draw the energy
flow through a refrigerator. This drawing shows
that both the work and the heat from the cold
side are transferred as heat to the hot side.[1]
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Figure 12.23: P-V plot for a gas going through a
clockwise cycle of isothermal and adiabatic
processes. This path maximizes the efficiency of a
heat engine. [1]

In the case of a refrigerator, we want to remove
heat from the heat sink and we put in work. Us-
ing the numbers from calculations of the change
in thermal energy for each part of the cycle from
Section 12.6, the efficiency of this refrigerator is

e = 14000 J

4000 J
= 3.5

Converting to a percentage gives 350%! The num-
ber can be more than 100% because in this case
none of the energy that we put in is actually go-
ing where we want it to go–all of it is going into
the heat source. And as it does that, it draws
an additional amount of heat out of the heat sink
and sends it into the heat source as well. This is
shown in Figure 12.22. In a situation like this, the
efficiency of a system is often instead called the
“coefficient of performance.”

In the case of a heat engine, we want work and
we put in heat from the heat source. The max-
imum efficiency can be achieved using isothermal
and adiabatic processes in what is called a “Carnot
cycle.” That maximum efficiency depends on the
temperatures (in K) of the heat source and the heat
sink:

emax = 1 −
Tcold

Thot
(12.12)

For the heat source and heat sink in Section 12.6,
a Carnot engine would have an efficiency of

emax = 1 −
301K

2709K
= 89%
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12.8 Entropy

Words

Potential energy stored in a spring can transform
into kinetic energy of a mass. And the kinetic en-
ergy of that mass can transform back into spring
potential energy. We have also seen that thermal
energy can flow from a hot skillet into cold wa-
ter, cooling the skillet while heating the water. If
the skillet and water behaved in the same way as
the spring and mass, the flow of thermal energy
could then reverse, returning the skillet to its orig-
inal high temperature and the water to its original
cold temperature. But entropy prevents this from
happening; it is an irreversible process.

“Entropy” can be understood in terms of tempera-
ture and heat or in terms of a number of available
states. Systems with higher temperature or more
available states generally have higher entropy. En-
tropy is often described as the amount of disorder
in a system, but “disorder” is difficult to identify
or even define. In the specific example of solids,
liquids, and gases it can be said that solids are
held in place in an ordered structure; liquids can
move around but the molecules are still close to
one another so they are less ordered; the molecules
of gases are free to move around so they have the
least order. As such, matter in liquid form tends to
have more entropy than matter in solid form, and
matter in gaseous form tends to have more entropy
than matter in liquid form.

If you have a driveway with one parking space,
and you have one car, then the available states for
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Figure 12.24: P-V plot for a gas going through
one complete cycle in four numbered steps. First
from “a” to “b,” then “b” to “c,” “c” to “d,” and
finally back to “a.” [1]

Numbers

The change in entropy ∆S of a system that is at
constant temperature is given by

∆S = ∆Eth

T
(12.13)

We can use this relationship to find the change in
entropy created by the heat engine from Section
12.6 as it goes through one cycle.

Assumptions: ideal monatomic gas; heat source
and heat sink with constant temperatures

Knowns Unknowns
n = 0.4mol ∆S

Va = Vb = 0.01m3

Vc = Vd = 0.03m3

Pa = Pd = 1 × 105 Pa
Pb = Pc = 3 × 105 Pa
∆Eth,1 = 3000 J
∆Eth,2 = 15000 J
∆Eth,3 = −9000 J
∆Eth,4 = −5000 J

The entropy of the heat engine is the same at the
beginning as it was at the end, since the pressure,
temperature, volume, and number of molecules is
the same at the end as it was at the beginning. So
to find the change in entropy we need to consider
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the car/driveway system are either (1) your car is
parked in the driveway or (2) it isn’t. If you have
a car and a truck, then there are more available
states–now either your car, your truck, or nothing
can be parked in the driveway. If you have an entire
parking lot then there are more possible places for
either vehicle to park. So entropy increases when
you have more types of vehicle or more spaces.

In a gas, calculation of the number of states is
complicated–possible states are affected, for exam-
ple, by the number and types of gas molecules,
their possible momenta (which is related to tem-
perature) and their possible positions (which is re-
lated to volume).

Back to the water and skillet, as they came to
equilibrium temperature the entropy of the skillet
decreased, but the entropy of the water increased
even more. So the total entropy of the system is
higher when their temperatures are the same. And
the flow of energy stops when entropy is at a maxi-
mum. There is no physical process that can reduce
the entropy of any isolated system. In an ideal sit-
uation a physical process could possibly result in
no change in entropy. But ideal situations don’t
actually exist in the real world. So every possible
physical process results in an increase in entropy.

Since the universe can be considered an isolated
system, that means the entropy of the universe is
always increasing. Unless an interaction with some-
thing outside of the physical universe intervenes,
the entropy of the universe will eventually reach
a maximum. At that point, all meaningful activ-
ity will stop–this is called the “heat death” of the
universe.

heat
engine

Heat source (2710K)

Heat sink (301K)

Eth,hot 18 000 J

Eth,cold 14 000 J

W = 4000 J

Figure 12.25: Diagram of energy flow through a
heat engine.[1]

Figure 12.26: Stars contain vast amounts of
energy, but if allowed to continue burning for a
few hundred million years they will eventually run
out of fuel. Their temperature would reach the
same as that of their surroundings, entropy would
be at a maximum, and no more useful energy
would be available for any meaningful activity.
This is called “heat death.” [2]

the entropy of the heat source and the heat sink.
Heat is flowing into the heat engine when ∆Eth is
positive, so during the first and second processes.
Heat is flowing out during the third and fourth pro-
cesses. Since the heat is flowing in from the heat
source and out to the heat sink…

∆Eth,hot =∆Eth,1 +∆Eth,2 = 18000 J

∆Eth,cold =∆Eth,3 +∆Eth,4 = −14000 J
That will allow us to find the change in entropy
of the heat source and the heat sink if we can find
their temperatures. For heat to flow into the engine
from the heat source, the temperature of the heat
source has to be higher than the temperature of
the gas, which is highest at point c. We can find
it by rearranging the ideal gas law:

Tsource,min =
Pc ⋅ Vc

n ⋅R
= 2710K

Similarly,

Tsink,max =
Pa ⋅ Va

n ⋅R
= 301K

If the heat source is at its minimum possible tem-
perature then the change in entropy of the heat
source is…

∆Ssource =
−∆Eth,hot

Tsource,min
= −6.6 J/K

The negative sign is because we want heat leaving
the source, not heat entering the engine. Similarly,

∆Ssink =
−∆Eth,cold

Tsink,max
= 46.5 J/K

So this heat engine creates a net entropy of at least
39.9 J/K for every 4 000 J of output work.
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12.9 Summary

Chapter summaries in this book are ordered by concept, not necessarily in the order in which they are
presented in the chapter. Mathematical models are grouped together at the end of each summary. See the
appendices for the meanings of all symbols used in this book.

General

• A mole is a number: 6.02 × 1023. Gas molecules are often counted in moles.

• The volume of a gas does not change during an isovolumetric process.

• Every possible physical process increases the entropy of an isolated system.

Forces

• The pressure of a gas does not change during an isobaric process.

Motion

• (Nothing!)

Momentum

• (Nothing!)

Energy

• Heat is another name for thermal energy.

• Thermal energy is related to the kinetic energy of atoms moving randomly on a microscopic level.

• Heat often travels by conduction through solids and liquids. In conduction, it is microscopic vibrations,
not molecules, that carry heat through a material.

• Heat often travels by convection through fluids. In convection, it is the bulk motion of material caused
by gravity and density changes, that carries heat through a material.

• The lengths of most solids increase with temperature.

• The volumes of most liquids increase with temperature.

• Heat flows from regions of higher temperature to regions of lower temperature unless something is
actively working on the system to prevent or even reverse the flow of heat.

• Thermal equilibrium is a state in which heat is not flowing, so all objects are at the same temperature.

• The change in the temperature of a material when heat is added to it is described by the specific heat
capacity of the material.

• The melting point of a material is the temperature at which a material in the solid state can melt
into the liquid state, and a material in the liquid state can freeze into the solid state.



• The boiling point of a material is the temperature at which a material in the liquid state can evaporate
into the gas state, and a material in the gas state can condense into the liquid state.

• The amount of heat required to melt a solid is called the latent heat of fusion. The same amount of
heat must be removed from a liquid to freeze it into a solid.

• The amount of heat required to evaporate a liquid is called the latent heat of vaporization. The same
amount of heat must be removed from a gas to condense it into a liquid.

• The internal energy of a gas includes the translational and rotational kinetic energies of the molecules
and also the potential energy related to vibrations of molecules that have more than one atom.

• When heat goes into a gas that is held at constant volume, all of the heat is transformed into the
internal energy of the gas.

• The total amount of heat that goes into a gas is equal to the sum of the change in the internal energy
of the gas and the work done by the gas.

• The area under the path on a pressure-vs-volume graph is the amount of work done by the gas if the
path goes from left to right, or the amount of work done on the gas if the path goes from right to
left.

Area = work [J]

Volume [m3]

Pr
es

su
re

[P
a]

Pressure vs volume graph showing work done by the gas[1]

• A heat engine is able to convert thermal energy into usable work while transferring thermal energy
from a high-temperature heat source to a low-temperature heat sink.

• No heat engine can be 100% efficient at converting thermal energy into work.

• The energy flow through a heat engine is often drawn schematically:

heat
engine

Heat source (hot)

Heat sink (cold)

Eth,hot

Eth,cold

W

Diagram of energy flow through a heat engine[1]

• Work is done on a gas in a thermodynamic cycle if the path goes counterclockwise on a P-V plot,
and work is done by the gas if the path goes clockwise. The amount of work is the area enclosed by
the path.
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• The temperature of a gas does not change during an isothermal process.

• No heat is transferred into or out of a gas during an adiabatic process.
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Mathematical Models

equation restrictions on the validity of the equation

∆Eth =m ⋅ c ⋅∆T (12.1) (approximation over a limited temperature range)

∆l = l ⋅ α ⋅∆T (12.2) (approximation over a limited temperature range)

∆TK =∆TC = 5
9
(∆TF ) (12.3) -none-

∆V = V ⋅ β ⋅∆T (12.4) (approximation over a limited temperature range)

Eth =m ⋅Lf (12.5) -none-

Eth =m ⋅Lv (12.6) -none-

Ptot ⋅ V = n ⋅R ⋅ T (12.7)
ideal gas

“Ideal gas law”

Uint = 3
2
n ⋅R ⋅ T = 3

2
N ⋅ kB ⋅ T (12.8) ideal monatomic gas

W = P ⋅∆V (12.9) ideal gas, constant pressure

∆Eth =∆Uint +W (12.10) -none-

e = What we want
What we put in

(12.11) -none-

emax = 1 − Tcold

Thot
(12.12) Ideal Carnot engine

∆S = ∆Eth

T
(12.13) constant temperature



12.10 Questions

Questions are ordered according to Bloom’s Taxonomy, progressing from regurgitating information (Level
1) to synthesizing new information with previous knowledge to create something new (Level 6). The bold
letters at the beginning of each question indicate whether the question involves Words [W], Graphics [G],
and/or Numbers [N]. See the appendices for conversion factors.

Level 1 - Remember

12.1 [W] What is another name for heat?

12.2 [W & N] In what units is heat measured?

12.3 [W & N] Add labels to each equation in the “Mathematical Models” section of the summary that
tell what the symbol to the left of the = sign represents.

Level 2 - Understand

12.4 [W] What is the difference between heat and temperature?

12.5 [N] An assumption was made in Section 12.1 that the iron would remain solid over the entire temper-
ature range. Look up the temperature at which iron melts. Is the assumption valid for this physical
scenario?

12.6 [W] Can convection occur inside a solid material? Explain your answer.

12.7 [W & N] 0○C is the temperature at which ice melts. What is the temperature at which water freezes?

12.8 [W & N] 100○C is the temperature at which water boils. What is the temperature at which water
vapor condenses?

12.9 [W] Describe the difference between latent heat of fusion and latent heat of vaporization.

12.10 [W] The size and shape of a container is held constant while the pressure of the gas inside the
container increases. What type of process is this (adiabatic, isobaric, isothermal, or isovolumetric)?

12.11 [W] The pressure inside a container is held constant while the temperature of the gas inside the
container increases. What type of process is this (adiabatic, isobaric, isothermal, or isovolumetric)?

12.12 [W] The temperature of a gas is held constant while the volume of the container increases. What
type of process is this (adiabatic, isobaric, isothermal, or isovolumetric)?

12.13 [W] A container is heavily insulated to prevent heat from entering or leaving it. The volume of the
container increases. What type of process is this (adiabatic, isobaric, isothermal, or isovolumetric)?

12.14 [W] List five things you have done today that have resulted in a net increase in the entropy of the
universe. (Don’t think about this one for too long–thinking requires a great deal of electrical activity
in the brain, which increases the entropy of the universe!)

12.15 [W] List everything you have done today that has resulted in a net decrease in the entropy of the
universe.



Level 3 - Apply

12.16 [W] This question has multiple parts about three systems “1,” “2,” and “3.” . Step through these
parts, and you will discover what is known as the “Zeroth Law of Thermodynamics.”

(a) System 1 is brought into thermal contact with System 2, and it is found that no heat transfers
between the two systems when they are brought into contact with each other. Are they in
thermal equilibrium with each other?

(b) System 1 and System 2 are separated and then System 2 is brought into thermal contact with
System 3. It is found that no heat transfers between them. Are they in thermal equilibrium with
each other?

(c) System 2 and System 3 are separated. If System 3 were now brought into thermal contact with
System 1, would you expect to find that they are in thermal equilibrium with each other?

(d) If you answered yes to all of the above parts then you just discovered the Zeroth Law of Thermo-
dynamics! Incidentally, what does this tell you about the temperatures of these three systems?

12.17 [N] Assuming that the coefficient of linear thermal expansion that is used in Section 12.1 is valid for
any temperature, what would the diameter of the skillet be at a temperature of absolute zero? What
would the diameter be at the melting point of iron?

12.18 [N] The final temperature of cold water poured into a hot skillet was analyzed in Section 12.2. How
much 10○C water would you need to pour into the 90○C skillet so that the final temperature of the
water and skillet would be 50○C?

12.19 [N] The final temperature of 1.5 kg of 10○C water poured into a hot skillet was analyzed in Sec-
tion 12.2. What if instead of water 1.5 kg of 10○C lead had been placed in the hot skillet? What
would the final temperature be in that situation? You will need to look up the specific heat capacity
of lead to answer this question.

12.20 [N] Practice converting temperature changes between the various scales mentioned in Section 12.2:

(a) What is a change of 273K in degrees Celsius?
(b) What is a change of 0○C in degrees Fahrenheit?
(c) What is a change of 10○F in degrees Celsius?

12.21 [G & N] The scenario in Section 12.3 starts with ice at a temperature of −20○C and ends with water
half boiled away. Re-do the calculations for the energy needed, starting at absolute zero and ending
when all of the water has boiled away.

12.22 [W, G, & N] In Section 12.4, an ideal monatomic gas was assumed. In fact, air compressors are
generally filled with air, which is mostly composed of diatomic gases. Re-do the analysis using the
same volume, temperatures, and initial pressure, but assuming that the air compressor is filled with a
diatomic gas instead of a monatomic gas. Do the values change for N , Pf,tot, and ∆Eth?

12.23 [N] The final volume is never calculated in Section 12.5, although it is shown in the P-V plot. Find a
way to calculate it from the information in the numbers column. Does your answer match reasonably
well with the value in the P-V plot?

12.24 [G & N] Use the P-V plot in Section 12.5 to find the work done by the gas in the cylinder. The work
isn’t actually calculated in the numbers section of this chapter. Find a way to use the information
there to calculate the work and then compare with the answer that you got using the graph.

12.25 [N] What is the maximum efficiency possible for a heat engine that is operating between a heat source
at 100○ and a heat sink at 0○?

12.26 [N] What is the change in entropy of 0.5 kg of ice at 0○C ice melting completely into 0○C water?



Level 4 - Analyze

12.27 [W & N] By what percentage did the height and the diameter of the iron skillet change in Sec-
tion 12.1? Did the volume change by the same percentage? Explain why or why not.

12.28 [N] The distance between the parallel rails of a standard train track is 1.4 meters. Use that information
to estimate the length of the horizontal gap in the expansion joint in the bottom rail of Figure 12.5.
Look up the coefficient of linear thermal expansion of steel, and also search for the maximum and
minimum outdoor temperatures where you live. If this type of expansion joint were used in railroad
tracks where you live, what is the maximum possible length of each solid piece of rail that will not
exceed the limits of the expansion joints?

12.29 [N] An iron skillet containing water is analyzed in Sections 12.1 & 12.2. What would happen if the
same skillet, at 10○C, was filled with water, also at 10○C, and then this system was heated? Both the
iron and the water would expand. But which would expand faster? Would the water overflow from
the skillet, or would the water level actually drop?

12.30 [W, G, & N] The scenario in Section 12.3 assumes that all of the heat is going into the water and
the ice. But the ice and water must have been in some kind of container. Re-do the analysis for the
same situation, but including a 2-kg copper pot that is holding the ice and water. You will need to
look up the specific heat capacity of copper. Assume that the copper pot starts at −20○C and ends
at 100○C. Does including the copper pot significantly change the amount of heat required?

12.31 [W & N] Consider the two different mathematical models of the internal energy that are given in
Equation 12.8, one after each equals sign. Use these mathematical models to find the relationship
between kB and R. Describe whether that relationship is supported by the units and numerical values
for these two constants.

12.32 [W & N] Gases don’t have simple expressions for specific heats like solids and liquids do. But
sometimes it is convenient to find an expression of specific heat that will work for a gas in a given
situation. For example, the specific heat of an ideal gas at constant volume Cv or at constant pressure
Cp, both symbolized with an uppercase C instead of a lowercase c. Use the information given in the
numbers columns to find the values of Cv and Cp for ideal monatomic gases and for ideal diatomic
gases. Show your work. The associated mathematical models are of the following form:

∆Eth = n ⋅Cv ⋅∆T

and
∆Eth = n ⋅Cp ⋅∆T

12.33 [G & N] Figure 12.21 could just as easily have been for a heat pump whose primary purpose is to
increase the temperature of the heat source. What would be the efficiency of that heat pump?

12.34 [G] Make an alternative diagram of energy flow like that in Figure 12.22 for Figure 12.19.

12.35 [N] Boyle’s Law, which states that P ⋅ V is constant for an ideal gas in a sealed container when
the temperature is held constant, is a consequence of the ideal gas law:

P ⋅ V = n ⋅R ⋅ T
P ⋅ V = (constant) ⋅ (constant) ⋅ (constant)
P ⋅ V = (constant)

n is constant, since the container is sealed. R is always a constant, and if T is also held constant,
then the entire right side of the equation is constant. Boyle’s Law. There are two other named laws
that are also consequences of the ideal gas law. Do the same sort of analysis using the ideal gas law
to determine each of the following:
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(a) “Charles’ Law,” which is valid for an ideal gas in a sealed container when the pressure is held
constant.

(b) “Avogadro’s Law,” which is valid for an ideal gas in an unsealed container when the pressure
and temperature are both held constant

Level 5 - Evaluate

12.36 [W, G, & N] In Section 12.1 the linear expansion of iron was used to find measurements. But the
volume that was calculated was actually an empty space inside an iron container. If the iron expands
uniformly, would that make the empty inside volume larger or smaller? Explain your reasoning.

12.37 [W & N] In Section 12.2, water is described as being unusual because at some temperatures it has a
negative coefficient of bulk thermal expansion. How unusual is this property? Do an internet search
for other materials that also have a negative coefficient of bulk thermal expansion. Are there any
other common materials with this property? Does there seem to be much engineering or scientific
interest in this topic?

12.38 [N] Find a table of specific heat capacities for various materials. Can you find any general trends?
Do some types of materials generally have higher specific heat capacities than some other types of
materials?

12.39 [N] Find tables of latent heats for various materials. Can you find any general trends? Is latent heat
of fusion generally higher or lower than latent heat of vaporization?

12.40 [W & N] 1 kg of liquid gold at its melting point is dropped into a bucket of 5 kg of liquid water at its
melting point. What is the temperature of the water-gold system when it reaches thermal equilibrium,
assuming that the system is thermally isolated from its surroundings? In what state (solid, liquid,
or gas) are the water and the gold at thermal equilibrium? You will need to look up the thermal
properties of gold to answer this question.

12.41 [G & N] When P-V plots were introduced in Figure 12.14, the figure showed the relationship between
pressure, volume, and temperature for an ideal gas. There is a necessary assumption that was made
but not mentioned when the graph was created. Think about the ideal gas law in relation to PV
plots. What unmentioned assumption is being made in the plots?

12.42 [W, G, & N] Can the efficiency of a heat pump be greater than 100%? Explain your answer.

Level 6 - Create

12.43 [W, G, & N] At the beginning of Chapter 1 in Figure 1.1 was a template for a concept map. Add
the main ideas from this chapter to the appropriate concept maps for earlier chapters.

12.44 [W, G, & N] Imagine you are writing a test question related to this chapter. Think of your own
example of a situation that you can analyze using the concepts, graphics, and mathematical analyses
described in this chapter. Describe the situation, and use the tools from this chapter to analyze the
situation as completely as you can, including motion, forces, energy, and momentum.

12.45 [W, G, & N] Think about possible misconceptions about the material in this chapter. Write a
question and an incorrect solution to it that demonstrates a student making such a conceptual error.
This cannot be a simple misuse of a vocabulary word, a unit error, or a mathematical error like
making an addition error or multiplying when addition was needed, unless the error is rooted in a real
misunderstanding about the physics behind the calculation or the misuse of a word. After you have
written the question and incorrect solution, explain what is wrong with the student’s solution, and
write a correct solution to the problem. Note: You may use a question from this chapter that you
got wrong the first time, and explain the initial error in your thinking and how you corrected it.



Appendix A

Symbols, Subscripts, & Abbreviations

Symbol Quantity SI Unit

a acceleration (magnitude or component) meters per second squared [m/s2]
Ð⇀a acceleration (vector) meters per second squared [m/s2]

a [attraction between particles] newton-meters to the 4th power N ⋅m4

A area square meters [m2]

A amplitude (whatever is being measured) (any)

b [volume of particles] meters cubed per mole m3/mol

c specific heat capacity joules per kilogram - degree Celsius [J/ (kg ⋅ ○C) or J/ (kg ⋅K)]

e efficiency usually a decimal or percentage (usually none)

E energy joules [J]

Ê the East direction -none-

f frequency hertz [Hz]



Symbol Quantity SI Unit

F force (magnitude or component) newtons [N]
Ð⇀
F force (vector) newtons [N]

g acceleration of gravity at earth’s surface (this is a constant) 9.8m/s2

h height meters [m]

I rotational inertia kilogram meters squared [kg ⋅m2]

kB Boltzmann constant (this is a constant) 1.38 × 1023 J/K

ks spring constant newtons per meter [N/m]

l length meters [m]

L latent heat joules per kilogram [J/kg]

L angular momentum kilogram meters squared per second [kg ⋅m2/s]

m mass kilograms [kg]

m an integer (0, ±1, ±2, etc.) -none-

MA mechanical advantage -none-

n an ordinal number (like 2 for 2nd) -none-

N a large number -none-

NA Avogadro’s number (this is a constant) 6.02 × 1023

N̂ the North direction -none-

p momentum (magnitude or component) kilogram-meters per second [kg ⋅m/s]
Ð⇀p momentum (vector) kilogram-meters per second [kg ⋅m/s]

P power watts [W]

P pressure Pascals [Pa]

r radius or distance from center meters [m]

R range meters [m]



Symbol Quantity SI Unit

s path length meters [m]

S entropy joules per kelvin [J/K]

SPL Sound Pressure Level decibels [dB]

t time seconds [s]

T period seconds [s]

T temperature degrees Celsius or kelvin [○C] or [K]

U potential energy joules [J]

v speed or component of velocity meters per second [m/s]
Ð⇀v velocity meters per second [m/s]

W work joules [J]

x horizontal position or component of Ð⇀x meters [m]
Ð⇀x position (vector) meters [m]

x̂ the x direction -none-

y vertical position meters [m]

ŷ the y direction -none-

Y Young’s modulus newtons per meter [N/m]

α angular acceleration radians per second squared [rad/s2]

α coefficient of linear thermal expansion reciprocal kelvin or reciprocal degrees Celsius [K−1 or ○C−1]

β coefficient of bulk thermal expansion reciprocal kelvin or reciprocal degrees Celsius [K−1 or ○C−1]

∆ “Change in …” -none-
Ð⇀
∆x displacement meters [m]

θ angle degrees or radians [○ or rad]

λ wavelength meters [m]



Symbol Quantity SI Unit

µk coefficient of kinetic friction -none-

µm linear mass density kilograms per meter [kg/m]

µs coefficient of static friction -none-

µv viscosity -none-

ρm mass density kilograms per cubic meter [kg/m3]

∑ “Sum of …” -none-

τ torque newton meters [N ⋅m]

φ phase degrees or radians [○ or rad]

Φm volumetric flux cubic meters per second [m3/s]

∅ diameter -none-

ω angular velocity radians per second [rad/s]

≡ “is defined as…” -none-

ˆ “in the …direction” -none-

Ð⇀ (Indicates a vector quantity) -none-

Subscript Meaning

0 at time t = 0

0 reference level (for sound pressure)

1,2, etc. of object #1, #2, etc.

avg average

atm atmospheric

b buoyant



Subscript Meaning

c centripetal

C in degrees Celsius

com Center of Mass

E East

f friction (for force)

f fusion (for latent heat)

f final (for everything except force and latent heat)

F in degrees Fahrenheit

g gravitational

i initial

int internal

k kinetic

K in kelvin

m mass

max maximum

mech mechanical

n normal (for force)

n nth (f3 is for the 3rd harmonic, for example)

N North

net net (total)

r rotational

s static (for frictional force)

s sound (for pressure)



Subscript Meaning

s spring

t tension

T tangential

th thermal

tot total

v viscosity (with µ)

v vaporization (with L)

V volumetric

x in the x̂ direction

y in the ŷ direction

∥ in the parallel direction

⊥ in the perpendicular direction

→, for example “1→ 2” of the first object acting on the second

←, for example “1← 2” of the first object as seen by the second

Abbreviation Meaning
COM (or com) Center of Mass

FBD Free Body Diagram
MA Mechanical Advantage
SHM Simple Harmonic Motion



Appendix B

Conversion Factors & Metric Prefixes

SI Unit = US Customary Unit

Length
0.0254 m = 1 inch (in)

1 m = 3.28 feet (ft)
1 609 m = 1 mile (mi)

Mass
14.6 kg = 1 slug

1 kg = the mass of an object that weighs 2.2 lb on earth
Volume 1 m3 = 1 000 liters (l)
Speed 1 m/s = 2.24 miles per hour (mph)
Force 1 N = 0.225 pound (lb)

Pressure
133 Pa = 1 millimeter of mercury (mm Hg)

6 895 Pa = 1 pound per square inch (psi)
1.01 × 105 Pa = 1 atmosphere (atm)

Energy

4.186 J = 1 calorie (cal)
4 186 J = 1 Calorie (Cal) = 1 kilocalorie (kcal)

3.6 × 106 J = 1 kilowatt-hour (kWh)
1 055 J = 1 British thermal unit (Btu)

Power 746 W = 1 horsepower (hp)
Angle π rad = 180○

Angular speed π
30

rad/s = 1 rotation per minute (rpm)



Metric prefix Abbreviation Meaning
Tera- T 1012

Giga- G 109

Mega- M 106

kilo- k 1000
centi- c 0.01
milli- m 0.001
micro- µ 10−6

nano- n 10−9

pico- p 10−12

femto- f 10−15



Appendix C

Physical Constants

Symbol Description Approximate value
g acceleration of gravity at the earth’s surface 9.81m/s2

G Newton’s Universal Gravitation Constant 6.67 × 10−11 N ⋅m2/kg2

kB Boltzmann constant 1.38 × 10−23 J/K
NA Avogadro’s number 6.02 × 1023

R Ideal gas constant 8.31 J
K⋅mol

Patm Atmospheric pressure at sea level 1.01 × 105 Pa





Appendix D

Geometrical Shapes

Circumference: C = 2πr

r

Area: A = πr2

h

b

Area: A = 1
2b ⋅ h

l

w Area: A = l ⋅w

r

Volume: V = 4
3πr

3

Surface Area: A = 4πr2

r

h

Volume: V = πr2 ⋅ h

l

w

h

Volume: V = l ⋅w ⋅ h
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Appendix E

Answers to End-of-Chapter Questions

The following are not intended to be complete answers for any of the end-of-chapter questions. Not all
questions are included. For those that are included, these partial answers are only intended to help you
know whether you are on the right track.

Chapter 1

Question 1.16: 784

Question 1.17: 0.638

Question 1.19: No

Question 1.21: -8

Question 1.22(b): 6.26

Chapter 2

Question 2.11: 1.3

Question 2.12: 3.9

Question 2.13: (The graph should feature a straight line.)

Question 2.14: (All three graphs should feature a straight line.)

Question 2.15: (Two of the three graphs should feature a straight line.)

Question 2.17(b): 40.2

Question 2.17(c): 80.4

Question 2.17(d): 8.93

Question 2.17(e): 0



Question 2.18: (The graph should feature a straight line.)

Question 2.19: (Changes are needed in three of the six parts to this question.)

Question 2.20: (Changes are needed in four or five, depending on your reasoning, of
the six parts to this question.)

Chapter 3

Question 3.5: (“Yes” is the answer to four of the six parts to this question.)

Question 3.6: 1.67

Question 3.7(b): 312 & 520

Question 3.9: 11

Question 3.10: (All of them are 0, +50, or -50)

Question 3.12: The energy of the ball is not conserved in this scenario.

Question 3.13: 194 000

Question 3.14: 27

Question 3.15(b & d): (One of these is “larger” and the other is “smaller.”)

Question 3.16: Time and displacement both increase.

Question 3.19: Ignoring friction does not cause a significant error in this calculation.

Question 3.20(a): 1.65 × 104

Chapter 4

Question 4.5: 2 190

Question 4.7: (Remember to include directions.)

Question 4.9: It is not an error in the text.

Question 4.10: 38.7 or 51.3 (depending on the orientation chosen for the angle)

Question 4.12: 3.77

Question 4.13: 7.95

Question 4.15: 20 & 1.6 × 104

Question 4.16: 10

Question 4.19: 8609 & either 65.4 or 24.6

Question 4.20: (One is larger and the other is smaller.)

Question 4.21: Yes, there is such a direction.

Question 4.22: 3 460, 4.5 & 23.4, & 631



Chapter 5

Question 5.10: 0 & 79

Question 5.11: 39.2

Question 5.13: It does agree.

Question 5.17: (The force of friction remains the same for two out of the four parts to
this question, and decreases for the other two.)

Question 5.18: Yes, such an angle exists.

Question 5.19: (Of the five parts of this question: two increase, one decreases, and
two remain the same.)

Question 5.20: The amount of energy stored in the spring would decrease.

Question 5.21: The amount of energy stored in the spring would increase.

Question 5.25: (Your calculation should give a difference that is less than two percent.
The actual value will depend on your assumptions.)

Chapter 6

Question 6.4: (Remember to consider both horizontal and vertical directions.)

Question 6.6: This was not an error in the textbook.

Question 6.9: (Two planets have a higher tangential velocity than earth.)

Question 6.11: (There are four different types of energy that should appear at some
point in the bar graphs.)

Question 6.14: 2.7 × 1040

Question 6.15: 2.7 × 1033

Question 6.16(a): vf = 15.9m/s

Question 6.16(b): t = 2.12 s

Question 6.16(c): The horizontal displacement could be larger, the same, or smaller.

Chapter 7

Question 7.7: 8.1 & 6.48

Question 7.8: 6 000, 62 400, 312 000, & 8.11 × 106

Question 7.9: (Only one remains constant.)

Question 7.13: (It should have the same unit.)

Question 7.15: 5.4 × 106



Question 7.16: 10.8

Question 7.19:
The rotational inertia, final angular momentum, torque, final rotational
kinetic energy, work, and applied force should all either increase or
decrease.

Question 7.20: The final angular velocity, angular acceleration, rotational inertia, final
angular momentum, and torque should all either increase or decrease.

Question 7.21: Yes.

Chapter 8

Question 8.8(a): 3.65 × 105

Question 8.9(a): 1.9 × 109

Question 8.9(e): 3.5 × 10−2

Question 8.10(a): 1.6 × 1036

Question 8.18(c): 73.5○

Question 8.19(a): Yes.

Question 8.19(b): Yes.

Chapter 9

Question 9.10: 6.67 × 10−7

Question 9.12: (Only one beat frequency should be audible)

Question 9.15: 2.5 × 10−4

Question 9.17: (One should be more than 10x faster than the other.)

Question 9.19: (There are two types of energy involved.)

Question 9.22: There should be no forces on any of the pieces.

Question 9.24: It was reasonable to neglect the force of gravity on the thumbtack.

Question 9.25(d): Rebar should be used on the bottom side of the concrete.

Question 9.26(d): Rebar should be used on the top side of the concrete.

Chapter 10

Question 10.14: 7.36 × 10−3

Question 10.16(a): 78.4



Question 10.17: P1,top = 3.995× 105 Pa; P2,bottom = 2.127× 105 Pa; P3,center = 4.000×
105 Pa;

Question 10.23: 139

Question 10.24(b): 4.73 × 10−2

Question 10.24(e): 0.464

Question 10.25: Yes.

Question 10.26: (Of the four parts of this question, all but one results in a flow rate
that is either doubled or decreased by half.)

Question 10.28: Increase.

Question 10.31: The actual density of garlic can vary between 920 and 990 kg/m3.

Question 10.33(b): No.

Chapter 11

Question 11.2: (Of the four parts to this question, only one can be negative.)

Question 11.5: Gauge pressure.

Question 11.7: 980

Question 11.8(d): Yes.

Question 11.13: Zero.

Question 11.19: (The difference should be less than 30%.)

Question 11.21: 430 & 370

Question 11.22(a & b): (The total volume of water + air should be 62.5 ml.)

Question 11.26: The area for the front tire is 7.88 × 10−4 m2.

Chapter 12

Question 12.6: No.

Question 12.17: (The diameters found should not differ from the original diameter by
more than 3%.)

Question 12.19: 80

Question 12.23: 7.98 × 10−2

Question 12.25: 27%

Question 12.27: Volume does not change by the same percentage as diameter.

Question 12.28: (For Cincinnati, Ohio, USA, this comes out to approximately 250 m.
The answer will vary based on local climate.)



Question 12.30: Including the pot in the analysis does not significantly affect the total
heat required.

Question 12.32: (Cp,monatomic has the same value as Cv,diatomic.)

Question 12.40: After reaching thermal equilibrium, the water is liquid and the gold is
solid.

Question 12.42: Yes.



Appendix F

Alignment of Learning Objectives

The learning objectives listed here were collected from the websites of the Ohio Department of Higher Education and the Association of American Medical
Colleges on November 10th, 2023.

Section MCAT Foundational Concepts Ohio TAG Learning Objectives
1.1 4A1.1: Vectors, components

4A1.4: Speed, velocity (average and instantaneous)
4A1.5: Acceleration

1.2 4A1.1: Units and Dimensions I-2a: Make accurate verbal, graphical, and mathematical descriptions
of translational and rotational motion in one and two dimensions
I-2b: Use algebra and graphical methods to link displacement, veloc-
ity, and acceleration

1.3 4A1.3: Vector addition I-2a: Make accurate verbal, graphical, and mathematical descriptions
of translational and rotational motion in one and two dimensions

4A3.1: Vector analysis of forces acting on a point object

https://transfercredit.ohio.gov/static/files/transfer/tags/OSC014+-+ALGEBRA-BASED+PHYSICS+I+(WITH+LABS)+(April+2023).pdf
https://students-residents.aamc.org/whats-mcat-exam/chemical-and-physical-foundations-biological-systems-section-overview
https://students-residents.aamc.org/whats-mcat-exam/chemical-and-physical-foundations-biological-systems-section-overview


Section MCAT Foundational Concepts Ohio TAG Learning Objectives
4A5.2: Potential Energy: PE = mgh (gravitational, local); PE =
1/2 kx2 (spring)

1.4 4A2.1: Newton’s First Law, Inertia I-2a: Make accurate verbal, graphical, and mathematical descriptions
of translational and rotational motion in one and two dimensions

4A5.1: Kinetic Energy: KE = 1/2 mv2; units I-3a: Use Newton’s laws of motion (1st, 2nd, and 3rd) to explain or
predict the motion of translating and rotating objects.
I-4b: Explain or predict the motion of translating and/or rotation of
objects in 1D using the conservation of momentum.

1.5 4A1.5: Acceleration I-2c: Solve 1D kinematic problems with constant linear and angular
acceleration.

4A2.2: Newton’s Second Law (F=ma) I-3a: Use Newton’s laws of motion (1st, 2nd, and 3rd) to explain or
predict the motion of translating and rotating objects.

4A5.3: Conservation of energy I-4a: Explain or predict the motion of translating and/or rotating
objects using conservation of energy.

2.1 4A1.1: Units and dimensions I-2a: Make accurate verbal, graphical, and mathematical descriptions
of translational and rotational motion in one and two dimensions

4A1.4: Speed, velocity (average and instantaneous)
2.2 4A2.1: Newton’s First Law, Inertia I-2a: Make accurate verbal, graphical, and mathematical descriptions

of translational and rotational motion in one and two dimensions
I-3a: Use Newton’s laws of motion (1st, 2nd, and 3rd) to explain or
predict the motion of translating and rotating objects.
I-4b: Explain or predict the motion of translating and/or rotation of
objects in 1D using the conservation of momentum.

2.3 4A1.4: Speed, velocity (average and instantaneous) I-2b: Use algebra and graphical methods to link displacement, veloc-
ity, and acceleration

4A4.3: Work Kinetic Energy Theorem I-2c: Solve 1D kinematic problems with constant linear and angular
acceleration.

4A5.3: Conservation of energy I-4a: Explain or predict the motion of translating and/or rotating
objects using conservation of energy.

2.4 I-2b: Use algebra and graphical methods to link displacement, veloc-
ity, and acceleration



Section MCAT Foundational Concepts Ohio TAG Learning Objectives
I-2c: Solve 1D kinematic problems with constant linear and angular
acceleration.

2.5 I-2b: Use algebra and graphical methods to link displacement, veloc-
ity, and acceleration
I-2c: Solve 1D kinematic problems with constant linear and angular
acceleration.

2.6 4A1.4: Speed, velocity (average and instantaneous) I-2b: Use algebra and graphical methods to link displacement, veloc-
ity, and acceleration

2.7 4A4.1: Work done by a constant force: W = Fd cosθ
2.8 I-2b: Use algebra and graphical methods to link displacement, veloc-

ity, and acceleration
3.1 I-2e: Relate the motion of two objects relative to each other.
3.2 4A2.3: Newton’s Third Law, forces equal and opposite I-3a: Use Newton’s laws of motion (1st, 2nd, and 3rd) to explain or

predict the motion of translating and rotating objects.
4A3.1: Vector analysis of forces acting on a point object

3.3 4A2.3: Newton’s Third Law, forces equal and opposite I-3a: Use Newton’s laws of motion (1st, 2nd, and 3rd) to explain or
predict the motion of translating and rotating objects.

3.4 I-4c: Explain or predict the outcome of collisions.
3.5 4A5.3: Conservation of energy I-4a: Explain or predict the motion of translating and/or rotating

objects using conservation of energy.
I-4c: Explain or predict the outcome of collisions.

3.6 I-4c: Explain or predict the outcome of collisions.
3.7 4A1.4: Speed, velocity (average and instantaneous)

4A4.1: Work done by a constant force: W = Fd cosθ
3.8 I-4c: Explain or predict the outcome of collisions.
3.9 4A4.1: Work done by a constant force: W = Fd cosθ
4.1 I-2e: Relate the motion of two objects relative to each other.
4.2 4A1.2: Vectors, components I-2a: Make accurate verbal, graphical, and mathematical descriptions

of translational and rotational motion in one and two dimensions



Section MCAT Foundational Concepts Ohio TAG Learning Objectives
I-2e: Relate the motion of two objects relative to each other.

4.3 I-2a: Make accurate verbal, graphical, and mathematical descriptions
of translational and rotational motion in one and two dimensions

4.4 I-4c: Explain or predict the outcome of collisions.
4.5 I-4c: Explain or predict the outcome of collisions.
4.6 4A1.3: Vector addition

4A3.1: Vector analysis of forces acting on a point object
4.7 4A1.3: Vector addition I-2a: Make accurate verbal, graphical, and mathematical descriptions

of translational and rotational motion in one and two dimensions
4A3.1: Vector analysis of forces acting on a point object
4A5.4: Power, units

4.8 4A2.2: Newton’s Second Law (F=ma) I-2a: Make accurate verbal, graphical, and mathematical descriptions
of translational and rotational motion in one and two dimensions

4A3.1: Vector analysis of forces acting on a point object I-3a: Use Newton’s laws of motion (1st, 2nd, and 3rd) to explain or
predict the motion of translating and rotating objects.

4.9 I-2a: Make accurate verbal, graphical, and mathematical descriptions
of translational and rotational motion in one and two dimensions

5.1 4A2.2: Newton’s Second Law (F=ma) I-3a: Use Newton’s laws of motion (1st, 2nd, and 3rd) to explain or
predict the motion of translating and rotating objects.

4A4.2: Mechanical advantage
5.2 4A4.4: Conservative forces

4A5.2: Potential Energy: PE = mgh (gravitational, local); PE =
1/2 kx2 (spring)

5.3 4A5.3: Conservation of energy I-4c: Explain or predict the outcome of collisions.
I-4a: Explain or predict the motion of translating and/or rotating
objects using conservation of energy.

5.4 4A2.2: Newton’s Second Law (F=ma) I-3a: Use Newton’s laws of motion (1st, 2nd, and 3rd) to explain or
predict the motion of translating and rotating objects.

4A2.4: Friction, static and kinetic



Section MCAT Foundational Concepts Ohio TAG Learning Objectives
5.5 4A1.2: Vectors, components I-2a: Make accurate verbal, graphical, and mathematical descriptions

of translational and rotational motion in one and two dimensions
4A2.4: Friction, static and kinetic I-4a: Explain or predict the motion of translating and/or rotating

objects using conservation of energy.
4A3.1: Vector analysis of forces acting on a point object
4A4.4: Conservative forces
4A5.3: Conservation of energy

5.6
6.1 4A1.2: Vectors, components I-2d: Solve 2D projectile motion problems with start and end points

at different heights.
6.2 I-2a: Make accurate verbal, graphical, and mathematical descriptions

of translational and rotational motion in one and two dimensions
6.3 I-2a: Make accurate verbal, graphical, and mathematical descriptions

of translational and rotational motion in one and two dimensions
6.4 4A6.1: Amplitude, frequency, phase I-2a: Make accurate verbal, graphical, and mathematical descriptions

of translational and rotational motion in one and two dimensions
I-5a: Explain or predict motion of objects in simple harmonic motion.

6.5 I-4b: Explain or predict the motion of translating and/or rotation of
objects in 1D using the conservation of momentum.

7.1 4A3.2: Torques, lever arms I-2b: Use algebra and graphical methods to link displacement, veloc-
ity, and acceleration
I-3a: Use Newton’s laws of motion (1st, 2nd, and 3rd) to explain or
predict the motion of translating and rotating objects.
I-2a: Make accurate verbal, graphical, and mathematical descriptions
of translational and rotational motion in one and two dimensions

7.2 4A3.2: Torques, lever arms I-3a: Use Newton’s laws of motion (1st, 2nd, and 3rd) to explain or
predict the motion of translating and rotating objects.
I-4e: Determine the moment of inertia of rigidly connected masses.

7.3 I-2a: Make accurate verbal, graphical, and mathematical descriptions
of translational and rotational motion in one and two dimensions



Section MCAT Foundational Concepts Ohio TAG Learning Objectives
I-2c: Solve 1D kinematic problems with constant linear and angular
acceleration.
I-4a: Explain or predict the motion of translating and/or rotating
objects using conservation of energy.
I-4e: Determine the moment of inertia of rigidly connected masses.

7.4 I-4b: Explain or predict the motion of translating and/or rotation of
objects in 1D using the conservation of momentum.
I-4e: Determine the moment of inertia of rigidly connected masses.

7.5 4A5.4: Power, units
7.6 4A3.2: Torques, lever arms I-3a: Use Newton’s laws of motion (1st, 2nd, and 3rd) to explain or

predict the motion of translating and rotating objects.
I-2c: Solve 1D kinematic problems with constant linear and angular
acceleration.

7.7 4A2.5: Center of mass I-4d: Determine the center of mass of extended objects.
7.8 I-4f: Use the parallel axis theorem in the solution of problems of

extended objects of simple symmetries rotating about an axis that is
not through their center of mass.

7.9 4A3.2: Torques, lever arms I-3a: Use Newton’s laws of motion (1st, 2nd, and 3rd) to explain or
predict the motion of translating and rotating objects.

8.1 4A5.3: Conservation of energy I-4a: Explain or predict the motion of translating and/or rotating
objects using conservation of energy.

8.2 4A6.1: Amplitude, frequency, phase I-5a: Explain or predict motion of objects in simple harmonic motion.
8.3 I-2a: Make accurate verbal, graphical, and mathematical descriptions

of translational and rotational motion in one and two dimensions
8.4 4A6.1: Amplitude, frequency, phase I-5a: Explain or predict motion of objects in simple harmonic motion.
8.5 4A6.1: Amplitude, frequency, phase I-5a: Explain or predict motion of objects in simple harmonic motion.
8.6 I-5a: Explain or predict motion of objects in simple harmonic motion.
9.1 4A6.1: Amplitude, frequency, phase I-5a: Explain or predict motion of objects in simple harmonic motion.



Section MCAT Foundational Concepts Ohio TAG Learning Objectives
4A6.2: Transverse and longitudinal waves: wavelength and propaga-
tion speed

I-5b: Explain or predict mechanical wave phenomena in terms of
frequency, wavelength, wave speed, and simple harmonic motion.

9.2 4A6.2: Transverse and longitudinal waves: wavelength and propaga-
tion speed

I-5b: Explain or predict mechanical wave phenomena in terms of
frequency, wavelength, wave speed, and simple harmonic motion.

9.3 4A6.2: Transverse and longitudinal waves: wavelength and propaga-
tion speed

I-5b: Explain or predict mechanical wave phenomena in terms of
frequency, wavelength, wave speed, and simple harmonic motion.

4D1.1: Production of sound I-5d: Describe standing wave patterns and how their confinement
determines the wavelength allowed.

4D1.6: Pitch I-5c: Use superposition in solving problems with interference of two
waves.

4D1.7: Resonance in pipes and strings
9.4 I-5e: Describe and predict the addition of two waves of similar but

not identical frequency aka the beating of waves
9.5 4A6.2: Transverse and longitudinal waves: wavelength and propaga-

tion speed
I-5b: Explain or predict mechanical wave phenomena in terms of
frequency, wavelength, wave speed, and simple harmonic motion.

4D1.2: Relative speed of sound in solids, liquids, and gases
4B1.1: Density, specific gravity

9.6 4B3.2: Pressure, simple mercury barometer
10 I-7g: Describe properties of phases of matter (solid, liquid, and gas)

and their transformations.
10.1 4B1.1: Density, specific gravity I-6a: Describe how the pressure in a fluid varies as a function of

depth in terms of the pressure relative to the surface of the fluid and
the absolute pressure in the fluid.

4B1.3: Hydrostatic pressure: Pascal’s Law; Hydrostatic pressure; P
= ρgh (pressure vs. depth)

10.2 4B1.3: Hydrostatic pressure: Pascal’s Law; Hydrostatic pressure; P
= ρgh (pressure vs. depth)

I-6a: Describe how the pressure in a fluid varies as a function of
depth in terms of the pressure relative to the surface of the fluid and
the absolute pressure in the fluid.
I-6e: Explain the physics underlying hydraulic lifts.



Section MCAT Foundational Concepts Ohio TAG Learning Objectives
10.3 4B1.2: Buoyancy, Archimedes’ Principle I-6d: Predict the apparent weight of objects partially or fully im-

mersed in a fluid.
I-6b: Predict whether an object will sink or float in a fluid.

10.4 4B1.5: Continuity equation (A ⋅ v = constant) I-6c: Predict the variation in velocity and pressure as an incompress-
ible fluid flows though pipes of varying diameter and height

4B1.8: Bernoulli’s equation
4B1.9: Venturi effect, Pitot tube

10.5 4B1.4: Viscosity: Poiseuille Flow
4B1.6: Concept of turbulence at high velocities
4B1.7: Surface tension

10.6 4D2.1: Concept of Interference; Young’s double-slit experiment II-4i: Relate the interference pattern of a double slit to the separation
of slits and wavelength.

11 I-7g: Describe properties of phases of matter (solid, liquid, and gas)
and their transformations.

11.1 4B3.4: Ideal gas: Definition; Ideal Gas Law: PV = nRT; Boyle’s
Law: PV = constant; Charles’ Law: V/T = constant; Avogadro’s
Law: V/n = constant

I-7c: Describe an ideal gas in terms of volume, pressure, temperature,
and number of moles.

4B3.5: Kinetic Molecular Theory of Gases: Heat capacity at constant
volume and at constant pressure; Boltzmann’s Constant

I-7d: Relate macroscopic and microscopic properties of matter using
the kinetic theory of gases.

11.2 4B3.4: Ideal gas: Definition; Ideal Gas Law: PV = nRT; Boyle’s
Law: PV = constant; Charles’ Law: V/T = constant; Avogadro’s
Law: V/n = constant

I-7c: Describe an ideal gas in terms of volume, pressure, temperature,
and number of moles.

11.3 4B3.2: Pressure, simple mercury barometer
11.4 4B3.1: Absolute temperature, K, Kelvin scale I-7f: Describe and predict properties of gases using the ideal gas law

4B3.4: Ideal gas: Definition; Ideal Gas Law: PV = nRT; Boyle’s
Law: PV = constant; Charles’ Law: V/T = constant; Avogadro’s
Law: V/n = constant

11.5 4D1.1: Production of sound I-5d: Describe standing wave patterns and how their confinement
determines the wavelength allowed.

4D1.2: Relative speed of sound in solids, liquids, and gases



Section MCAT Foundational Concepts Ohio TAG Learning Objectives
4D1.7: Resonance in pipes and strings

11.6 4D1.3: Intensity of sound, decibel units, log scale
4D1.4: Attenuation (damping)

11.7 4D1.5: Doppler Effect: moving sound source or observer, reflection
of sound from a moving object

I-5f: Solve problems where the frequency of a sound detected is
affected by the motion of the source and/or the receiver relative to
the medium (Doppler Effect).

4D1.8: Ultrasound
4D1.9: Shock waves

11.8 4B3.6: Deviation of real gas behavior from Ideal Gas Law: Qualita-
tive; Quantitative (Van der Waals’ Equation)
4B3.7: Partial pressure, mole fraction
4B3.8: Dalton’s Law relating partial pressure to composition
5E3.1: Thermodynamic system - state function

12.1 5E3.6: Measurement of heat changes (calorimetry), heat capacity,
specific heat

I-7a: Describe the effect of heat on the properties of materials.

5E3.12: Coefficient of expansion I-7h: Transfer of heat by conduction, convection, and radiation.
5E3.7: Heat transfer – conduction, convection, radiation

12.2 4B3.1: Absolute temperature, K, Kelvin scale I-7b: Describe/predict the transfer of energy between a system and
its environment using the first law of thermodynamics

5E3.3: First Law - conservation of energy in thermodynamic pro-
cesses

I-7h: Transfer of heat by conduction, convection, and radiation.

5E3.7: Heat transfer – conduction, convection, radiation
5E3.2: Zeroth Law – concept of temperature

12.3 5E3.3: First Law - conservation of energy in thermodynamic pro-
cesses

I-7b: Describe/predict the transfer of energy between a system and
its environment using the first law of thermodynamics

5E3.13: Heat of fusion, heat of vaporization I-7g: Describe properties of phases of matter (solid, liquid, and gas)
and their transformations.

5E3.14: Phase diagram: pressure and temperature



Section MCAT Foundational Concepts Ohio TAG Learning Objectives
12.4 5E3.3: First Law - conservation of energy in thermodynamic pro-

cesses
I-7b: Describe/predict the transfer of energy between a system and
its environment using the first law of thermodynamics

5E3.4: PV diagram: work done = area under or enclosed by curve
4B3.3: Molar volume at 0○C and 1 atm = 22.4 L/mol

12.5 5E3.4: PV diagram: work done = area under or enclosed by curve
12.6 5E3.4: PV diagram: work done = area under or enclosed by curve I-7e: Predict the efficiency of a heat engine and its maximum effi-

ciency.
12.7 5E3.4: PV diagram: work done = area under or enclosed by curve I-7e: Predict the efficiency of a heat engine and its maximum effi-

ciency.
12.8 5E3.5: Second Law – concept of entropy: Entropy as a measure of

“disorder”; Relative entropy for gas, liquid, and crystal states
I-7i: Distinguish between reversible and irreversible processes.
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