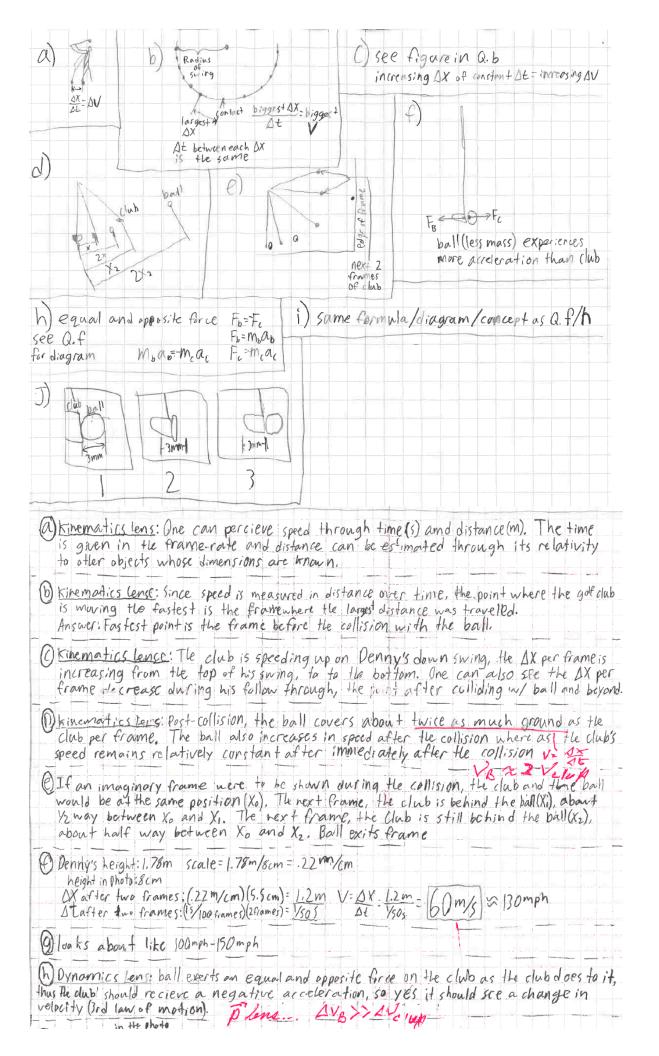

Problem Set #2 due beginning of class, Tuesday, April 17. Please state the lens you are using and why.

Very important!. Thursday of Week 2, we will do our first of two projects. We will take kinematic movies of an activity. You will provide graphs of your movement as a function of time – position-t, velocity-t, acceleration-t, net force-t, kinetic energy-t, power-t. You will calculate the maximum power you put out. Please plan this activity in a group of 2-4 people. Please read more about the project on the class webpage on our main class website. Please propose an activity/experiment that your group could do. This project is part of your final grade. It will be collected on Thursday of Week 3.

- 1. My mass is 70 kg, and the mass of my bike is 10 kg. I'm riding my bike at a constant speed of 15 m/s. At 0s, my displacement is $x = -10 \, m$. At t = 1s, I apply my breaks and smoothly slow to a stop over a period of two seconds.
 - a) What lens do I use to make these graphs?
 - b) Please graph my acceleration, velocity, and displacement as a function of time. Label the axes correctly.

Then please also find:

- c) the force exerted by my breaks; Force of the breaks causes acceleration of the bike and rider
- d) and the work done by my breaks and *Energy because the work of the breaks turns kinetic energy into thermal energy*
- e) the average power. Rate of change of energy
- f) Was energy conserved in this process? How? YES, energy is always conserved. Kinetic energy was converted to thermal energy. So mechanical energy was "lost" to thermal energy, but the total energy is conserved.
- g) Was momentum conserved in this process? How? There is an outside force (the breaks) on the bike, so the bike's momentum isn't conserved. However, the force is between the earth and the bike, so the total momentum of the bike-earth system is conserved. That is, the earth gains the momentum that the bike "lost". OR, momentum is transferred from the bike to the earth via the force of friction.



3. Denny Shute (https://en.wikipedia.org/wiki/Denny_Shute) was a rather tall professional golfer in the 1930s. "Doc" Edgarton (https://en.wikipedia.org/wiki/Harold_Eugene_Edgerton) was a professor of electrical engineering at MIT who pioneered stroboscopic photography, where an ultra-short flash allowed a process to be illuminated on camera film for such a short time to freeze the process in time. His pictures of a bullet through an apple (http://www.bbc.com/future/story/20140722-the-man-who-froze-the-world) for instance made him famous, and when I was a student there in the early 80's his talks would fill the largest lecture halls with no standing room left. Edgerton photographed Denny Shute hitting a golf ball (http://artsalesindex.artinfo.com/auctions/Harold-Edgerton-5230133/Densmore-Shute-Bends-The-Shaft-1938) in the dark with multiple flashes at a frequency of 100 flashes per second.

a) In this photograph of Denny Shute's drive, how can you perceive speed? What lens do you look at this problem through?

- b) Where is the golf club moving the fastest? How can you tell? Which lens do you use?
- c) Where is the golf club speeding up and slowing down?
- d) How does the speed of the golf ball compare to the speed of the golf club?
- e) There was no flash at the moment that the club hits a golf ball. Where is the club when the ball is at the last two positions before leaving the screen?
- f) Estimate the speed of the golf ball from this picture. Express it in m/s.
- g) Roughly estimate the speed of a golf ball from your experiences. Close your eyes and imagine one being hit, or see a video: https://www.youtube.com/watch?v=8W89QnvY4Rg
- h) When the club hits the ball, the ball speeds up. Should the speed of the club change as well? How do you know? What lens do you use?
- i) From looking at the change in speeds of the ball and club on impact, can you make some statement about their relative masses? Can you estimate the ratio of the mass of the club to the mass of the ball?
- j) Please estimate the amount of time that the club is in contact with the ball. You might do this by considering Edgerton's picture, or a careful look at this video at about 30 s: https://www.youtube.com/watch?v=6TA1s1oNpbk
- k) Please calculate the average force between the ball and club during the collision.
- Please calculate the average power provided by the club to the ball during the collision

- i) If we look closely, it seems the club's decrease in velocity is about ¼ the increase in speed of the ball. Thus the mass of the club should be about 4 times the mass of the ball. If you look this up, is this what you find?
- j) I'm going to use my momentum lens because force is the rate of change of momentum, but I could use the dynamics lens too because the normal force between the ball and club accelerates the ball (and the club in the opposite direction). Let's say that the club is in contact with the ball for about 1 ball diameter let's say 2 cm. I show in the video how I find the speed of the golf ball to be about 80 m/s. Thus, the two are in contact is about $1/4000 \, \text{s}$, or $\sim 2.5 \, \text{x} \, 10^{-4} \text{s}$.
- k) The mass of a golf ball is about 45g or 0.05 kg. If force is the rate of change of momentum, the momentum the ball gains is about 4 kg m/s. In 1/4000 of a second, this would correspond to a force of about 16,000 N (The force of gravity on a large car, but only for a short time). If you put a golf ball between two steel plates and drove a large car on the top one, would it cause the ball to squish like it does when it's hit with the club? NOTE, the acceleration of the golf ball when it's hit with the club is way way way more than the acceleration of the club head that we calculate in the video to be about 120 gravities ~ 1,200 m/s². The acceleration of the ball is about 60 m/s * 4000/s ~ 240,000 m/s² or 24,000 gravities.
- l) I use an energy lens because power is the rate of change of energy. The ball gains kinetic energy... we calculate about 160 J in 1/4000 of a second for an average power of about 0.64 MW... MEGA Watts! That's the power put out by a massive truck under full power but only for a very short time while the club is hitting the ball!